Access network-attached storage (NFS and Samba)

Linux #redhat #network #filesystem

Network File System (NFS)

This filesystem is not local to your computer.
Called NAS (Network Attached Storage)
NFS is one of the protocols on NAS
NFS stands for Network File System, a file system developed by Sun Microsystems, Inc.

» This was a company who actually had one of the biggest operating system called Solaris, Sun Microsystems now is

being bought by Oracle

It is a client/server system that allows users to access files across a network and treat them as if they resided in a local file
directory
For example, if you were using a computer linked to a second computer via NFS, you could access files on the second
computer as if they resided in a directory on the first computer. This is accomplished through the processes of exporting
(the process by which an NFS server provides remote clients with access to its files) and mounting (the process by which
client map NFS shared filesystem)

Approved

[

NFS Request

Server Client

You have a machine, a computer, a client. This machine wants to attach a filesystem that is being shared from another
computer, so it sends an NFS request.

That NFS request goes to a server that is hosting that filesystem.

Then based on the rules that are defined in the server, meaning the policies and which server to share with, which server
to trust and all that, once that is satisfied, then the server is gonna send the approved request back to its client.

Steps for NFS Server Configuration

The server will share its filesystem

Install NFS packages

yum/dnf install nfs-utils libnfsidmap (most likely they are installed)
» Check if already installed with rpm -ga | grep nfs

Example using rpm command:

[root@localhost ~]# rpm —ga | grep nfs
libnfsidmap-2.5.4-25.e19.x86_64
nfs—utils-2.5.4-25.e19.x86_64
sssd-nfs—idmap-2.9.4-6.e19_4.x86_64

Enable and start NFS services

systemctl enable rpcbind

systemctl enable nfs-server

systemctl start rpcbind, nfs-server, rpc-statd, nfs-idmapd
These are the 4 services that we need to start

Create NFS share directory and assign permissions

mkdir /mypretzels (if you already have a directory that you want to share then you do not need to create a new one)
chmod a+rwx /mypretzels

Add some files to the directory so it is not empty

Example using 1s command in the shared filesystem:

[root@linuxtest mypretzels]# ls —-1ltr

total 4

-rw-r——r——. 1 root root @ Jul 4 17:18 c
-rw—-r——r——. 1 root root © Jul 4 17:18 b
-rw—-r——r——. 1 root root @ Jul 4 17:18 a
-rw-r——r——. 1 root root 37 Jul 4 17:19 kramer

Modify /etc/exports file to add new shared filesystem

The reason we need to modify this file is because if you want to have this filesystem to be shared, we have to have certain
option on it
The following line means we want /mypretzels to be shared only with the server that has this IP, and it will have the rw
permission.
/mypretzels 192.168.12.7 (rw,sync,no_root_squash) = for only 1 host
/mypretzels = NFS share (this is what you are sharing)
192.168.12.7 = |P address of client machine from which we are gonna share the filesystem with
What if you wanted to share with everybody? Then you could simply put a * (asterisk) sign instead of an IP.
rw = Giving permissions to the client
sync = All changes to the according filesystem are immediately flushed to disk; the respective write operations are
being waited for. (don't way any longer when you are writing to this filesystem from a client, just write it to the disk
right away)
no_root_squash = Root on the client machine will have the same level of access to the files on the system as root
on the server (client root will have the same permissions as server root)

/mypretzels *x (rw,sync,no_root_squash) = for everyone

Create a backup copy
Example using cp command:

[root@localhost ~]# cp /etc/exports /etc/exports_orig

It is also recommended to put the date in the copy file
This way if we make a mistake we could always copy it back to its original version.

Edit the /etc/exports file
Example using vi command:

[root@localhost ~]# vi /etc/exports

File editor:

Since we are editing /etc/exports for the first time you will see the file is empty

Please be very careful when you modify this file

File editor:

/mypretzels *(rw,sync,no_root_squash)

~

twq!

First enter what you are exporting (/mypretzels)

Then you can Tab and enter who are you exporting it to (* for everyone)
Then specify permissions and options ((rw,sync,no_root_sq))

Now save the file by hitting the Esc key and typing :wq!

Export the NFS filesystem

exportfs -rv
The —r option is to republish everything that is inside of etc/exports

The -v option is to show a verbose mode

Example using exportfs command:

[root@localhost mypretzels]# exportfs -rv
exporting *:/mypretzels

» Now it will tell you that it is exporting the filesystem to everybody (), and the filesystem is /mypretzels as we defined in
the /etc/exports file

Make sure firewalld or iptables stopped (if running)

e ps —ef | egrep "firewall|iptable"
e systemctl stop firewalld
e systemctl stop iptables

Steps for NFS client configuration

» This is the machine that wants to access the shared filesystem
» You can go ahead and create a second Linux Virtual Machine for the sake of experiment.
« Remember to select to Bridge Network Adapter in the virtual environment (More on Linux System Access (Command
Line and GUI))

Install NFS packages

e yum/dnf install nfs-utils
« Check if already installed with rpm —qa | grep nfs
o yum/dnf install rpcbind (if not already installed)

Enable and start NFS services

o systemctl enable rpcbind
« In comparison to the server side this is the only server that has to be running in the client machine

= You could verify the service is running by doing ps —ef | grep rpc

Make sure firewalld or iptables stopped (if running)

e ps —ef | egrep "firewall|iptable"

e systemctl stop firewalld

e systemctl stop iptables

» Check also on the server side that this services are stopped

Show mount from the NFS server

o showmount -e 192.168.1.177 (NFS Server IP)
» Use the showmount command to see what is available to see for the client to mount.
» The —e option stands for "exports" and shows the NFS server's export list.

Example using showmount command:

[root@localhost ~]# showmount -e 192.168.1.177
Export list for 192.168.1.177
/mypretzels *

Create a mount point

e mkdir /mnt/kramer

Mount the NFS filesystem

e mount 192.168.1.177:/mypretzels /mnt/kramer
s 192.168.1.177 is the IP of the NFS server
o /mypretzels is the shared filesystem
s /mnt/kramer is the mount point we just created

Verify mounted filesystem
e df -h

Output from df-h:

192.168.1.18:/mypretzels 8.0G 4.1G 4.0G 51% /mnt/kramer

Going to /mnt/kramer and verifying we got the same files from the shared filesystem on the server
Example using s command:

[root@localhost ~]# cd /mnt/kramer
[root@localhost kramer]# 1s -1ltr

total 4

-rw—-r——r——. 1 root root @ Jul 4 17:18 c
-rw—-r——r——. 1 root root © Jul 4 17:18 b
-rw—-r——r——. 1 root root @ Jul 4 17:18 a
-rw-r——r——. 1 root root 37 Jul 4 17:19 kramer

» Note these are the same files that we created on the shared filesystem on the server side.

Modify the filesystem from the client size and verify on the server
Example using touch command:

[root@localhost kramer]# touch david
[root@localhost kramer]# 1ls -1ltr

total 4

-rw-r——r——. 1 root root © Jul 4 17:18 c
-rw-r——r——. 1 root root © Jul 4 17:18 b
-rw-r——r——. 1 root root © Jul 4 17:18 a

-rw-r——r——. 1 root root 37 Jul 4 17:19 kramer
-rw-r——r——. 1 root root 37 Jul 4 17:19 david

Verify the changes on the server side
Example using s command:

[root@localhost mypretzels]# 1ls —ltr

total 4

—rw—-r—r—. 1 root root 0 Jul 4 17:18 c
—-rw—-r—r—. 1 root root 0 Jul 4 17:18 b
—-rw-r——r——. 1 root root 0 Jul 4 17:18 a
—-rw—-r—r—. 1 root root 37 Jul 4 17:19 kramer
—rw—-r—r——. 1 root root 37 Jul 4 17:19 david

To unmount

umount /mnt/kramer

You have to get out of the directory in order to unmount the filesystem

Samba

Samba is a Linux tool or utility that allows sharing for Linux resources such as files and printers to with other operating
systems

It works exactly like NFS but the difference is NFS shares within Linux or Unix like system whereas Samba shares with
other OS (e.g. Windows, MAC etc.)

For example, computer “A” shares its filesystem with computer “B” using Samba then computer “B” will see that shared
filesystem as if it is mounted as the local filesystem

Approved

| D
< |
mount request
Server Client

Samba (smb vs. CIFS)

Samba shares its filesystem through a protocol called SMB (Server Message Block) which was invented by IBM
Another protocol used to share Samba is through CIFS (Common Internet File System) invented by Microsoft and NMB
(NetBios Named Server)

CIFS became the extension of SMB and now Microsoft has introduced newer version of SMB v2 and v3 that are mostly
used in the industry

In simple term, most people, when they use either SMB or CIFS, are talking about the same exact thing

Samba Installation and Configuration

» Take snapshot of your VM
» Install samba packages
« Enable samba to be allowed through firewall (Only if you have firewall running)
» Disable firewall
« Please get the permission to disable the firewall service if you are in production
» Create Samba share directory and assign permissions
» Change SELinux security context for the samba shared directory
o Or disable SELinux
» Please confirm with your security team if in a production environment
o Modify /etc/samba/smb.conf file to add new shared filesystem
» Please make a backup copy of the smb.conf file
» Verify the setting
» Once the packages are installed, enable and start Samba services (smb and nmb)
» Mount Samba share on Windows client
» Mount Samba share on Linux client using CIFS
» Create secure Samba share

Samba step by step installation instructions

» In this note we will be doing exercises with Samba to know how it works so we will need different machines to test this:
« The host 'linuxtest' will be our Samba server this time
» Then we have a Windows machine from which we will access the Samba share
« Finally a second Linux machine this time for client will be 'monks’

» First please make sure to take a snapshot of your VM

Install samba packages

» Become root user
e yum/dnf install samba samba-client samba-common

» Run rpm -ga | grep samba to verify that the packages were installed

Enable samba to be allowed through firewall (Only if you have firewall running)

e firewall-cmd ——permanent ——zone=public ——add-service=samba

e firewall-cmd —reload

To stop and disable firewalld or iptables

systemctl stop firewalld

systemctl stop iptables
systemctl disable firewalld

systemctl disable iptables

Create a Samba share directory and assign permissions

e mkdir -p /samba/morepretzels
« The -p option stands for "parents" and specifies to no error if existing, make parent directories as needed

» You could pick any name for this directory
e chmod a+rwx /samba/morepretzels

« Now everyone could read, write, and execute

e chown -R nobody:nobody /samba
« Changing the ownership
» If you originally goto / anddo 1s -1, you will notice that the /samba directory is owned by root (since we created it
while on root user). We want to change its ownership permissions to nobody.
» The -R options stands for "recursive" and specifies to cascade down the action in that directory
» Note we are specifying nobody for user then : and then nobody for the group as well

Example using s command:

[root@localhost ~]# ls -1tr /

Output:

drwxr—xr—x. 3 nobody nobody 26 Jul 4 19:10 samba

» The ownership changed from root to nobody
» Confirm the same with the contents of the /samba directory

Change the SELinux security context for the samba shared

o sestatus (To check the SELinux status)

e vi /etc/selinux/config

Output from sestatus:

SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing

Mode from config file: enforcing
Policy MLS status: enabled

Policy deny_unknown status: allowed

Memory protection checking: actual (secure)
Max kernel policy version: 33

» ltis enabled and enforcing so we want to disable it
« If you are running in production please check with your security folks before disabling SELinux

Example using vi command:

[root@localhost ~]# vi /etc/selinux/config

File editor:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:

enforcing — SELinux security policy is enforced.
permissive — SELinux prints warnings instead of enforcing.
disabled — No SELinux policy is loaded.

#SELINUX=enforcing
SELINUX=disabled

» Uncomment or add the line SELINUX=disabled to disable SELinux completely
« After saving the file do a reboot to reload the config file.
» After rebooting when you run sestatus command you will see the following lien

Output from sestatus:

SELinux status: disabled

Modify /etc/samba/smb.conf file to add new shared filesystem
» (Make sure to create a copy of smb.conf file)

Example using cp command:

[root@linuxtest ~]# cd /etc/samba

[root@linuxtest sambal# 1s -1ltr

total 20

—-rw—-r——r——. 1 root root 11319 May 1 13:13 smb.conf.example
—-rw-r——r—. 1 root root 853 May 1 13:13 smb.conf
-rw-r——r—. 1 root root 20 May 1 13:13 Ulmhosts
[root@linuxtest samba]# cp smb.conf smb.conf.orig
[root@linuxtest samba]l#

Modifying the smb.conf file
Example using vi command:

[root@linuxtest sambal# vi smb.conf

File editor:

See smb.conf.example for a more detailed config file or
read the smb.conf manpage.

Run 'testparm' to verify the config is correct after

you modified it.

#

Note:

SMB1 is disabled by default. This means clients without support for SMB2 or
SMB3 are no longer able to connect to smbd (by default).

[global]
workgroup = SAMBA
security = user

passdb backend = tdbsam

printing = cups
printcap name cups
load printers = yes
cups options = raw

[homes]
comment = Home Directories
valid users = %S, %D%w%S
browseable = No
read only = No
inherit acls = Yes

[printers]
comment = All Printers
path = /var/tmp
printable = Yes
create mask = 0600
browseable = No

[prints]
comment = Printer Drivers
path = /var/lib/samba/drivers
write list = @printadmin root
force group = @printadmin
create mask = 0664
directory mask = 0775

» This is how the default file looks like
» Go ahead and delete everything below the comment section

» Put your cursor on the first line where it says [global] and just keep pressing the 'D' key to delete everything that's
below

Delete everything from the smb.conf file and add the following parameters

File editor:

[global]
workgroup = WORKGROUP
netbios name = centos
security = user
map to guest = bad user
dns proxy = no

[Anonymous]

path = /samba/morepretzels
browsable = yes
writable = yes
guest ok = yes

guest only = yes
read only = no

» This is how the file should look like after modifying it
» These are just some default settings
» [Anonymous] is going to be the actual share that's gonna show up, and the path is gonna be /samba/morepretzels, this
is the filesystem that we created to be share
» All the followed permissions are set there
« Everybody could use it, everybody could browse it, etc.
» Escape and save out of it.

Verify the setting

e testparm
» This command will exactly going to test all the parameters that we have for Samba

Example using testparm command:

[root@linuxtest ~]# testparm

Output:

Load smb config files from /etc/samba/smb.conf
Loaded services file OK.
Weak crypto is allowed by GnuTLS (e.g. NTLM as a compatibility fallback)

Server role: ROLE_STANDALONE
Press enter to see a dump of your service definitions

Global parameters
[global]
dns proxy = No
map to guest = Bad User
netbios name = CENTOS
security = USER
idmap config * : backend = tdb

[Anonymous]
guest ok = Yes
guest only = Yes
path = /samba/morepretzels
read only = No

« It will ask you to hit Enter
» If no errors are coming up, everything is perfectly set up until here.

Enable and start Samba services

e systemctl enable smb

systemctl enable nmb
systemctl start smb
systemctl start nmb
Remember that the reason we enable the service is to let the service start on boot

Always check the status of the services to be sure.

Mount on Windows client

First create any file to later verify the contents of the share

Example using touch command:

[root@linuxtest samba]# cd /samba/morepretzels/
[root@linuxtest morepretzels]# ls —-ltr

total 0

[root@linuxtest morepretzels]# touch apples
[root@linuxtest morepretzels]# ls —-ltr

total 0

—-rw—-r——r—— 1 root root @ Jul 4 23:28 apples
[root@linuxtest morepretzels]#

Now on your windows machine:

Open File Explorer

At the top select the path box and type the following
\\192.168.1.200
This is the IP of your server

W 1921681200 X

=] fa » MNetwork > 192.168.1.200 > Search 192.

(F Details

a Gallery

h Home | . Anonymous

Maximus - Personal
B Desktop
' Documents
& Pictures
B PrepaTec

m TAMU

Titem |

]

M Anonymous +

Network > 92.168.1.2 > Anonymous Search Anonymous

= 000 [Details

h Home Name £ Type
.] apples 0 File
A Gallery
Maximus - Personal
B Deskto
' Documents
& Pictures

Il Prepalec

1item |

'apples' is the file that we just created on the server side.
This is the same file that you have shared from the server

Go ahead and create a file from the Windows machine

This way you would know it is showing up on the Linux machine as well.
Go ahead and:
right-click -> New -> Text document

[}
M Anonymous X +

Network > > Anonymous Search Anonymous

@ New - Tl Sort - = View ~ aae (B Details

ﬁ H Name - Date modified Type
ome

B apples g File
& Gallery

(] yada L Jocument
Maximus - Persenal

MW Desktop

' ocuments

& Pictures

I Prepalec

2items |

Now go back to the Linux machine and verify
Example using s command:

[root@linuxtest morepretzels]# ls —-ltr

total 0

-rw-r——r—— 1 root root 0 Jul 4 23:28 apples
—rwxr——r—— 1 nobody nobody @ Jul 4 23:39 yada.txt

Now you will see the yada.txt file on here as well

Note apples was created by root because we created that file while we were logged in as root user

Mount on Linux client

» Become root
e yum/dnf -y install cifs-utils samba-client
» Create a mount point directory
e mkdir /mnt/sambashare
» Mount the samba share
e mount -t cifs //192.168.1.200/Anonymous /mnt/sambashare/
« The -t option is for which filesystem (The argument following the -t is used to indicate the filesystem type.)
» Note 192.168.1.200 is the IP address of the server machine and we are indicating to access the share
Anonymous filesystem that we created in the smb.conf file. Finally we specify the mountpoint, where are we
mounting it on?
» Once you hit Enter it will prompt you for a password. WHAT?
» Entry without password
« On this point just simply go ahead and hit Enter, do not type any password or don't put any keys

Verify the share is mounted
Example using df -h command:

[root@monks ~]# df -h

» Note that in this example the client hostname is 'monks’

Output:

//192.168.1.200/Anonymous 8.0G 5.1G 3.0G 63% /mnt/sambashare

Verify we can access the files that we previously created on the share
Example using s command:

[root@monks ~]# cd /mnt/sambashare/

[root@monks sambashare]l# 1s -1

-rw-r——r—— 1 root root @ Jul 4 23:28 apples
—rwxr——r—— 1 nobody nobody @ Jul 4 23:39 yada.txt

» Note these are the same files we could access on Windows, as well as on the Linux server.
» You could also create another file here and you can see it both on the Linux server and on the Windows client.

Extra: Secure Samba Server

Create a group smbgrp & user larry to access the samba server with proper authentication

e useradd larry
e groupadd smbgrp
e usermod -a -G smbgrp larry

e smbpasswd —a larry

Example using smbpasswd command:

[root@linuxtest ~]# smbpasswd —a larry

Output:

New SMB password: YOUR SAMBA PASS
Retype new SMB password: REPEAT YOUR SAMBA PASS]
Added user larry

Create a new share, set the permission on the share

o mkdir /samba/securepretzels
e chown -R larry:smbgrp /samba/securepretzels
e chmod -R 0770 /samba/securepretzels
e chcon -t samba_share_t /samba/securepretzels
« This las line is to change the SELinux security context (label).

Edit the configuration file /etc/samba/smb.conf
(Create a backup copy first)

e vi /etc/samba/smb.conf

« Add the following lines

File editor:

[Secure]
path = /samba/securepretzels
valid users = @smbgrp
guest ok = no
writable = yes
browsable = yes

File editor:

See smb.conf.example for a more detailed config file or

read the smb.conf manpage.

Run 'testparm' to verify the config is correct after

you modified it.

#

Note:

SMB1 is disabled by default. This means clients without support for SMB2 or
SMB3 are no longer able to connect to smbd (by default).

[global]
workgroup = WORKGROUP
netbios name = centos
security = user
map to guest = bad user
dns proxy = no

[Anonymous]
path = /samba/morepretzels
browsable = yes
writable = yes
guest ok = yes
guest only = yes
read only = no

[Secure]
path = /samba/securepretzels
valid users = @smbgrp
guest ok = no
writable = yes
browsable = yes

o The smb.conf file should now look something like this
» Note that now we have two shared filesystems, one is public and the other is private and is only reachable by members of
the smbgrp

Restart the services

o systemctl restart smb

e systemctl restart nmb

