Analyze and store logs

Linux #redhat #logs

Log Monitoring
Another and most important way of system administration is log monitor.

Think of it as if you have your personal physician or a doctor, every time you go to him, he or she has a chart on you with
the record of your medical history, which tells the doctor what are the problems you had in the past, whether you had any
surgery, whether you're allergic to any medicine. So that is the way doctors keep logs on your physical health.
Just like that systems also have to keep logs and generate logs and record everything that goes on with the system.
In a Linux system, the primary log directory is /var/log
All the logs that are generated in Linux machines are mainly in /var/log directory unless specified or changed in
the configuration file of an application to change the log location.

Log Directory = /var/log

boot - Log when your system boots up or reboots.
Records everything that goes on to your system
How it cleans up the memory
What are the process starting up
If it is having any issues, it will log everything in there.
chronyd = NTP - (The newer version of NTP), it has its own log.
cron
maillog
secure
messages - One of the important logs to monitor system activities.
Everything that is hardware wise, application wise, process wise, or anything that has todo with the system it goes
into /var/log/messages

httpd - An Apache application log.

Boot logs

Example using 11 command:

[user@localhost log]$ 11

Now the current directory location is /var/log
Remember the 11 command has the same effect as the 1s —1tr except for the sorting order, instead of ordering from
newest to older, it sorts in alphabetical order of the name of the file.

Output:

total 4608
drwxr-xr-x. 2 root root 4096 Jun 3 13:27 anaconda

drwx—————— . 2 root root 23 Jun 3 13:37 audit

—W———— . 1 root root 2099 Jun 14 12:21 boot. log
—rw—————— . 1 root root 16674 Jun 6 11:48 boot.log-20240606
—W—————— . 1 root root 16676 Jun 9 15:55 boot.log-20240609
—W———— . 1 root root 16619 Jun 10 11:22 boot.log-20240610
—W———— . 1 root root 32992 Jun 11 11:10 boot.log-20240611
—rW———— . 1 root root 16675 Jun 12 00:14 boot.log-20240612
—rw—————— . 1 root root 65723 Jun 13 10:45 boot.log-20240613
—W———— . 1 root root 16675 Jun 14 12:21 boot.log-20240614
-rw-rw—-———. 1 root utmp 5760 Jun 14 13:42 btmp

drwxr-x———. 2 chrony chrony 6 Jan 23 08:33 chrony

—rw—————— . 1 root root 17215 Jun 14 13:24 cron

—rW———— 1 root root 13248 Jun 6 23:01 cron-20240609
drwxr-xr-x. 2 1p sys 57 Jun 3 13:13 cups

-rw—-r——r——. 1 root root 30518 Jun 14 13:17 dnf.librepo.log
-rw—-r——r——. 1 root root 66505 Jun 14 13:17 dnf. log
-rw—-r——r——. 1 root root 2378 Jun 14 13:17 dnf.rpm.log
—rw—r————— . 1 root root @ Jun 3 13:37 firewalld
drwx——x-——x. 2 root gdm 6 Jan 18 09:08 gdm

-rw—-r——r——. 1 root root 1533 Jun 14 13:17 hawkey. log
-rw-r——r——. 1 root root 900 Jun 6 21:04 hawkey.log—-20240609
drwx————— . 2 root root 6 Feb 15 12:01 insights-client
—rw—————-— . 1 root root 11826 Jun 14 12:22 kdump.log
-rw-rw-r——. 1 root utmp 293168 Jun 14 13:43 lastlog
—rw—————— . 1 root root @ Jun 9 15:55 maillog
—rw—————— . 1 root root @ Jun 3 13:11 maillog-20240609
—rw—————- . 1 root root 2065905 Jun 14 13:43 messages
—rwW—————— . 1 root root 2116408 Jun 6 22:33 messages—-20240609
drwx—————— . 2 root root 6 Jun 3 13:11 private
drwxr-xr-x. 2 root root 6 Mar 26 09:19 gemu—ga
lrwxrwxrwx. 1 root root 39 Jun 3 13:11 README —> ../../usr/share/doc/systemd/README. logs
drwxr-xr-=x. 2 root root 119 Jun 9 15:55 rhsm

drwx—————— . 3 root root 17 Jun 3 13:11 samba

—rw——————- . 1 root root 40897 Jun 14 13:43 secure

=[ffm=———== . 1 root root 21941 Jun 6 13:15 secure-20240609
drwx—————— . 2 root root 6 Aug 10 2021 speech-dispatcher
—rw—————- . 1 root root @ Jun 9 15:55 spooler
—rw—————-— . 1 root root @ Jun 3 13:11 spooler-20240609
drwxr—-x———. 2 sssd sssd 55 Jun 9 15:55 sssd

=[ffE=————— . 1 root root @ Jun 3 13:11 tallylog
drwxr-xr-x. 2 root root 23 Jun 3 19:58 tuned

—-rw—-rw-r——. 1 root utmp 32640 Jun 14 12:27 wtmp

» This is how the /var/log directory looks like.
» Audit is one of the files or directory that has all the audit information.
« Then we have boot.log.
« If we try to read this file as a common user it will throw: more: cannot open boot.log: Permission denied, this
when using more command.

« This is because the file is owned by root and the group who owns that file is also root. Also we can clearly see that it
has no permissions at the group and others levels.

Example using more command:

[root@localhost log]# more boot.log

» Note we are located at the /var/log directory.
» Note we are root user so we will be able to read this file.

Output:

0K
OK

Finished Rotate log files.

Started Authorization Manager.

Starting Modem Manager...

Starting firewalld - dynamic firewall daemon...
[OK] Started Accounts Service.

—

—_—

Coming up with OK messages while system is booting up.

Every time there is an issue with the system booting up, it will come up with a message saying false, error or alert.
Starting all the services and processes one by one.

When you reboot your system, the /var/log/boot. log file gets overwritten.

chronyd logs

Any type of changes that we make on the Chrony service, it actually generates the log and it actually logs that information
into their logs.

cron logs

Whenever you schedule a job or a process through a cron tab entry, it generates some kind of activity, and that activity or
that record is logged into the /var/log/cron file.

Example using more command:

[root@localhost log]# more cron

Note we are located at the /var/log directory.

Note we are root user so we will be able to read this file.

Output:

Jun 10 15:01:01 localhost run-parts[4760]: (/etc/cron.hourly) starting @anacron
Jun 10 15:01:01 localhost run-parts[4766]: (/etc/cron.hourly) finished @anacron
Jun 10 15:01:01 localhost CROND[4756]: (root) CMDEND (run-parts /etc/cron.hourly)
Jun 10 16:01:01 localhost CROND[4919]: (root) CMD (run-parts /etc/cron.hourly)
Jun 10 16:01:01 localhost run—-parts[4922]: (/etc/cron.hourly) starting @anacron

Whenever you open up a log file:
The first column is the month
Second is the date
Third is time
Fourth is the name of your host name
Fifth is the daemon, which is CROND and process ID associated with that daemon.
Sixth is the user who's running that
Seventh is the command or the entry that has been associated with that cron.

Example using dmesg command:

[root@localhost log]# dmesg

o When you run the dmesg command it gives you the information about the hardware.

» Apparently RHEL 9 does not contain the a file named "dmesg" in the /var/log directory. In RHEL 8 an alternative to the
dmesg command used to be cat dmesg while in the log directory.

Output:

33

—_r— ———— . —

30.]
32.]
33.]

.945963]
51.]
60.]

287.]

297.]

602238
507505
409177

232882
706257
981112
794382

Maillog logs

NET: Registered PF_QIPCRTR protocol family

Warning: Unmaintained driver is detected: ip_set

e1000: enp@s3 NIC Link is Up 1000 Mbps Full Duplex, Flow Control: RX
IPv6: ADDRCONF(NETDEV_CHANGE): enp@s3: link becomes ready

block dm-0: the capability attribute has been deprecated.

rfkill: input handler disabled

rfkill: input handler enabled

rfkill: input handler disabled

» Has all the information about your send mail daemon

« Every time you send an email out, or every time an email comes in, all that activity is being recorded in this log.

» In my case this file is empty as | have not settled up any email in this machine.

» You can also use more maillog or cat maillog while inthe /var/log directory to check the contents of maillog.

» Whenever you are troubleshooting issues with send mail service, this is one of the logs you would have to look into to see
why your server is not able to send emails.

Secure logs

» Records all your logging in, logging out activity.

Example using more command:

[root@localhost log]# more secure

Output:

Jun 9 18:14:39 localhost useradd[5459]: new user: name=spiderman, UID=1001, GID=1001,
home=/home/spiderman, shell=/b

in/bash, from=/dev/pts/0

Jun 9 18:15:54 localhost usermod[5483]: add 'spiderman' to group 'superheros'

Jun 9 18:15:54 localhost usermod[5483]: add 'spiderman' to shadow group 'superheros'
Jun 9 19:12:41 localhost useradd[7419]: new user: name=ironman, UID=1002, GID=1002,
home=/home/ironman, shell=/bin/b

ash, from=/dev/pts/0

Jun 14 13:43:00 localhost su[3464]: pam_unix(su-l:session): session opened for user root(uid=0) by

mmarin(uid=1000)
Jun 14 13:43:51 localhost su[3464]: pam_unix(su-l:session): session closed for user root

Jun 14 13:51:50 localhost su[3514]: pam_unix(su-l:session): session opened for user root(uid=0) by

mmarin(uid=1000)

» When you do more on secure you'll see all the users that have been logged in, if they have failed logging in, from which

machine they're logging in.

Example using tail command:

[root@localhost logl# tail —-f secure

» tail - outputs the last part of the file
—f is the option that will keep on sniffing the log and every time a new record is updated to the log, that tail —f will get

the newest log at the bottom.
» Used to sniff the tail of the /var/log/secure log file.

Output:

Jun 14 13:43:00 localhost su[3464]: pam_unix(su-l:session): session opened for user root(uid=0) by

mmarin(uid=1000)
Jun 14 13:43:51 localhost su[3464]: pam_unix(su-l:session): session closed for user root
Jun 14 13:51:50 localhost su[3514]: pam_unix(su-l:session): session opened for user root(uid=0) by

mmarin(uid=1000)

» You will not get your prompt back until you do Shift + C to stop the process.

» Meaning it will keep sniffing the file.
» If a user attempts to log in to your machine it will look lik this:

Output:
Jun 14 14:33:03 localhost sshd[3652]: Accepted password for mmarin from 192.168.1.58 port 54926 ssh2

Jun 14 14:33:03 localhost sshd[3652]: pam_unix(sshd:session): session opened for user mmarin(uid=1000)

by mmarin(uid=0)

In this example the user "mmarin” logged in from 192.168.1.58 machine.

» An SSH session is opened for mmarin.

Messages logs

« Every time there's an issue with your machine, the first thing an administrator does, they log into your machine and they

will trace the logs in messages file.

Example using more command:

[root@localhost log]# more messages

Output:

Jun 9 15:55:15 localhost kernel: Device empty

Jun 9 15:55:15 localhost kernel: Movable zone start for each node

Jun 9 15:55:15 localhost kernel: Early memory node ranges

Jun 9 15:55:15 localhost kernel: node 0: [mem 0x0000000000001000-0x000000000009%efff]
Jun 9 15:55:15 localhost kernel: node 0: [mem 0x0000000000100000-0x00000000dffeffff]

» This file has all the hardware information, all the software information, all the application information, all the processes
information, everything is being logged into this log.

Example using cat command:

[root@localhost log]# cat messages | wc -1

» If you wanted to see how many lines this log file has you can run this command.
» The wc command is counting the lines, which is specified by the -1 option, of the /var/log/messages file.

Output:
20753
Example using grep command:

[root@localhost log]# grep —-i error

» If you want to see if there are any error messages in this file you can run this command.
» The grep command is being used to look for the word "error" in the /var/log/messages file.
« The -i option of the grep command specifies to ignore uppercase, lowercase from messages file.

Output:

Jun 14 12:26:37 localhost gnome-shell[2103]: libinput error: event3 - ImExPS/2 Generic Explorer
Mouse: client bug: event processing lagging behind by 38ms, your system is too slow

Jun 14 12:26:40 localhost gnome-shell[2103]: libinput error: event2 - AT Translated Set 2 keyboard:
client bug: event processing lagging behind by 166ms, your system is too slow

» You'll see it actually gripped every line inside of this log file that has a message called error.
» This way you could go and see what's going on with your system, what happened, why it failed, what time it failed.

Preserve journals

from How to configure your system to preserve system logs after a reboot

Keep system journals after a reboot

https://www.redhat.com/sysadmin/store-linux-system-journals

The process involves creating a storage location (probably in /var/log) and then editing the journald configuration to direct
messages to that location.

Create a storage directory

First, create a journal directory under the /var/log directory:

[server]$ sudo mkdir /var/log/journal

Edit the journald.conf file

Edit the file /etc/systemd/journald.conf and set the Storage parameter to persistent (it is set to auto by default):

[server]$ sudo vim /etc/systemd/journald.conf
[Journal]
Storage=persistent

[ev.]

Restart systemd-journald

Next, restart the systemd-journald service:

[server]$ systemctl restart systemd-journald

Reboot the server

Finally, reboot the server to confirm the persistence of entries by listing the /var/log/journal content. You should have
output that looks similar to this:

[server]$ ls /var/log/journal
75ab164a278e48be9cf80d80716a8cd9

Maintaining accurate time

Maintaining accurate system time is critical for log file analysis across multiple systems
The reason we maintain the accurate time is what if you're running for example a web server and that web server,
behind it, you have multiple servers. That providing the service or the actual horsepower to your website. So
something goes wrong, your website crashes, and now you have to review the logs one system to another. And if
your systems do not have the accurate time, then you are gonna have very hard time finding out where and at what
time the problem occurred.

Also having accurate time on a system is requirement for sensitive applications such as database in production
environment
The network time protocol (NTP) is a standard way for machines to provide and synchronize the time to the NTP server

An NTP server is a dedicated machine/computer which responds to clients for time synchronization
chronyd is a NTP service used for time synchronization in the newer Linux versions.
Older versions had NTPD service.
Command to show system time/date
date
Outputs: Fri Jun 14 03:44:47 PM CDT 2024
You can use the date command to change your time or date.
Command for time/date and NTP setting
timedatectl
You can see your time and date
You can set your time and date
You can check your NTP setting.

Example using timedatectl command:

[user@localhost ~]$ timedatectl

Output:

Local time: Fri 2024-06-14 15:46:57 CDT
Universal time: Fri 2024-06-14 20:46:57 UTC
RTC time: Fri 2024-06-14 20:43:53
Time zone: America/Ojinaga (CDT, -0500)
System clock synchronized: no
NTP service: active
RTC in local TZ: no

It'll give you local universal RTC time,

The time zone

The system clock synchronization, this is what the NTP setting is, and it's telling no, meaning it is not synchronized with
the NTP service, which is active.

To get help
timedatectl —-help

You can also run man timedatectl

To view the list of time zones

timedatectl list-timezones

Example using timedatectl command:

[user@localhost ~]$ timedatectl list-timezones

Command to see the list of time zone available to you.
Output:
America/Anguilla

America/Antigua
America/Araguaina

America/Argentina/Buenos_Aires
America/Argentina/Catamarca

You will get all the list of every country within their city that you could set the time zone to.\

This list is provided to you the first time when you are doing the Linux installation. So you could change it now if you want
to.

To set a time zone

timedatectl set-timezone America/Chihuahua

Replace the "America/Chihuahua" time zone example to your desired time zone
To set time or to set time and date

timedatectl set-time HH:MM:SS

timedate set-time '2024-06-14 20:15:50'

Example using timedatectl command:

[user@localhost ~]$ timedatectl set-time 06:48:00

Attempting to change the system time with the timedatectl command and set-time function.

Output:

Failed to set time: Automatic time synchronization is enabled

When NTP is active for system clock synchronization this command won't be effective.
To enable NTP synchronization
timedatectl set-ntp true
Note you cannot just sync to an NTP server if you do not have any NTP server running.

chronyd

chronyd is a daemon that is the latest version that is used nowadays to replace an NTP daemon.
Why did they do it? Because it probably have most enhanced features in it.
The purpose of chronyd is time synchronization
The package name that you'll need to install for this program is called chronyd
The configuration file is /etc/chronyd.conf
This is where you go in and specify the NTP server.
Now again, NTP is used to synchronize your system clock with an external clock or any other clock within your
organization, that serves as an NTP server.
Log file = /var/log/chronyd
All the activity is logged into this file.
Service = systemctl start/restart chronyd
When you configure the chronyd.conf file then you have to start or restart a chronyd service.
Program command = chronyc.
It will tell you which NTP clock you are synced with, what's the status of it.

Check if we have the package installed
Example using rpm command:

[root@localhost log]# rpm —ga | grep chrony

Looking for the term "chrony" using the grep command and the rpm command to query all the packages we have
installed.

Output:

chrony-4.5-1.e19.x86_64

We just confirmed that we have the chrony package

If you do not have the chrony package installed then run: yum install chrony
Checking our configuration file
Example using vi command:

[root@localhost log]# vi /etc/chrony.conf

File editor:

Use public servers from the pool.ntp.org project.

Please consider joining the pool (https://www.pool.ntp.org/join.html).
pool 2.rhel.pool.ntp.org iburst

Use NTP servers from DHCP.
sourcedir /run/chrony-dhcp

In this example machine there is no server defined with the server keyword.
Add a new server to the configuration file:

File editor:

Use public servers from the pool.ntp.org project.
Please consider joining the pool (https://www.pool.ntp.org/join.html).

server 8.8.8.8
pool 2.rhel.pool.ntp.org iburst

Add a new line after the first two lines of comments.

The Google server is the 8.8.8.8 server. (This is not an NTP server by google, this is just a DNS server)
Only works for practice and example purposes.

Check if the service is running
Example using systemctl command:

[root@localhost log]# systemctl status chronyd

Output:

® chronyd.service — NTP client/server
Loaded: loaded (/usr/lib/systemd/system/chronyd.service; enabled; preset: enabled)
Active: active (running) since Sat 2024-06-15 13:51:18 CST; 19min ago
Docs: man:chronyd(8)
man:chrony.conf(5)
Process: 817 ExecStart=/usr/sbin/chronyd $0PTIONS (code=exited, status=0/SUCCESS)
Main PID: 843 (chronyd)
Tasks: 1 (limit: 65779)
Memory: 4.0M
CPU: 471ms
CGroup: /system.slice/chronyd.service
L843 /usr/sbin/chronyd —F 2

Jun 15 13:51:18 localhost chronyd[843]: Frequency 27.072 +/- 0.169 ppm read from /var/lib/chrony/drift

In this case the status of the chronyd service is active and running.
It is a good practice to check the status of the ntpd as well by doing systemctl status ntpd and ifitis running it is
recommended to stop it because you do not want to tun two services that perform or that serves the same purpose.

If active, run systemctl stop ntpd, and verify the new status.

You will probably want to disable it to, then run systemctl disable ntpd so it does not start at boot time.

In my build of RHEL 9 the ntpd package is not included.

If the chronyd service is active already and you just changed something in its configuration file you will have to stop the
service and start it again, in order to apply its configuration changes. Or you can use the command systemctl restart
chronyd to restart the service in the process reloading its configuration file.

Every time you modify a configuration file, you have to restart a service.

Start chronyd
Example using systemctl command:

[root@localhost log]# systemctl start chronyd

Use this line to start the service in case the service appears inactive when checking the status.

Enable chronyd at boot time
Example using systemctl command:

[root@localhost log]# systemctl enable chronyd

chronyc

The program that comes whit this package it's called "chronyc" which it is belived that stands for "command".
Example using chronyc command:

[root@localhost log]# chronyc

When you type this command and hit enter it will bring you into an interactive program mode of it's own chronyc.

Output:

chrony version 4.5

Copyright (C) 1997-2003, 2007, 2009-2023 Richard P. Curnow and others
chrony comes with ABSOLUTELY NO WARRANTY. This is free software, and
you are welcome to redistribute it under certain conditions. See the
GNU General Public License version 2 for details.

chronyc>

Example using help command:

chronyc> help

Output:
timeout <milliseconds> Set initial response timeout
retries <retries> Set maximum number of retries

keygen [<id> [<type> [<bits>]]]
Generate key for key file

exit|quit Leave the program
help Generate this help
chronyc>

+ When you enter help you'll see there's so many commands that you could run within this program.

Example using sources command:

ch ronyc> sources

» This command will tell us which NTP server we are connecting to.

Output:
MS Name/IP address Stratum Poll Reach LastRx Last sample
~? dns.google 0 6 (/] = +0ns [+0ns] +/- Ons
~— nu.binary.net 2 6 17 0 +4017us[+4017us] +/- 62ms
~+ 66.85.78.80 2 6 17 0 +2111us[+2111us] +/- 59ms
~~ tl.time.bfl.yahoo.com 2 6 17 1 -4494us[-4494us] +/- 34ms
~* nsl.your-site.com 2 6 7 2 —-859us [-2216us] +/- 43ms

» If you remember for the example above we picked 8.8.8.8, and this is the google server that we are syncing our time to.
And of course this is not actually an NTP server, it is just picked for training purposes. Do not use a DNS server for NTP
purposes.

Example using quit command:

chronyc>

To exit out of chronyc justtype quit inthe command line.

