Configure and secure SSH

Linux #redhat #ssh
What exactly is SSH?

» SSH stands for Secure Shell
+ Whatis a shell?

» Ashell provides you with an interface to the Linux system. It takes in your commands and translate them to
kernel to manage hardware.

» When you actually log into your Linux machine and you get a prompt, and you type in the commands for those
prompts, that environment is a shell. It's actually a platform that's given to you to control or give commands to
your kernel.

« When a user logs in, they get a dollar sign ($)

« When a root logs in, they get a hash sign or a pound sign (#)

Hardware

Utilities

» Utilities (1s, pwd, cp) (Controls Shell)

« Shell (bash, csh, ksh) (Controls Kernel)

» Kernel (Controls hardware)
« Hardware (Dell, HP, Apple, etc)

» Open SSH is a package/software

» By default when you install Linux or Red Hat, that OpenSSH package comes installed on your system.
» When we run OpenSSH, it starts as daemon and that daemon name is 'sshd'.

» You could stop and restart its daemon if you know the name of the daemon.

Which port that SSH service runs on?
» By default the SSH port runs on port number 22
» Many programs in Linux have a dedicated port numbers that by default, they're run on.

SSH itself is secure, meaning communication through SSH is always encrypted, but there should be some additional
configuration can be done to make it more secure.

Following are the most common configuration an administrator should take to secure SSH

Configuring Idle Timeout Interval

Avoid having an unattended SSH session, you can set an Idle timeout interval
Become root
Edit your /etc/ssh/sshd_config file and add the following line:

clientAlivelInterval 600
clientAliveCountMax 0

Then restart the daemon using the systemctl restart sshd

The idle timeout interval you are setting is in seconds (600 secs = 10 minutes). Once the interval has passed, the idle user
will be automatically logged out

It's always recommended to make a backup copy of the sshd_config file or any file in /etc for that matter.

Example using cp command:

[root@localhost ~]# cp /etc/ssh/sshd_config /etc/ssh/sshd_config-orig

Doing a backup of the /etc/ssh/sshd_config file by copying the file to another directory or in this case by changing the
name of the copy and keeping it in the same directory (/etc/ssh/).
Note we are logged in as root user.

Example using vi command:

[root@localhost ~]# vi /etc/ssh/sshd_config

Open and edit the /etc/ssh/sshd_config file using vi file editor.

File editor:

override default of no subsystems
Subsystem sftp /usr/libexec/openssh/sftp-server

Example of overriding settings on a per-user basis
#Match User anoncvs

X11Forwarding no

AllowTcpForwarding no
PermitTTY no

ForceCommand cvs server

Is best to add the lines that you want to add towards the end of the file because they are not already included in the file
and in that way you can now what you added later.

If you want to go to the end of the file quickly, type Shift + G.

Hit O in your keyboard to start a new line.
Note when typing O, the INSERT mode is automatically set.

Then you can type the instructions and remember that any line starting with # will be ignored (they are comments)
Note when a valid instruction is typed is it will turn yellow.

Example using systemctl command:

[root@localhost ~]# systemctl restart sshd

Restart sshd daemon using the systemctl command

Example using cp command:

[root@localhost ~]# cp /etc/ssh/sshd_config-orig /etc/ssh/sshd_config

Bringing back the backup copy you made in case you do not want changes to be done or you just want to restore the old
configuration.

Output:

cp: overwrite '/etc/ssh/sshd_config'? y

As you are overwriting a file and potentially loosing information previously written in that file it will ask the user to confirm
the action

Enter "y" for yes and "n" for no

Disable root login

Disabling root login should be one of the measures you should take when setting up the system for the first time. It disable
any user to login to the system with root account
Become root
Edit your /etc/ssh/sshd_config file and replace PermitRootLogin yes to no:
For this you can use the vi file editor and simply type / while not in INSERT mode to look for the term
"PermitRootLogin" in the whole file.

After finding where it is you can uncomment the line in case of needing it and replace the "yes" keyword to "no".

PermitRootLogin no

Then restart the sshd daemon by running systemctl restart sshd

Disable empty Passwords

You need to prevent remote logins from accounts with empty passwords for added security.
So any user that does not have a password, they should be limited, they should be forced to not log in unless they create
a password.

Become root

Edit your /etc/ssh/sshd_config file and remove # from the following line

PermitEmptyPAsswords no

Then restart the sshd daemon by running systemctl restart sshd

Limit Users' SSH Access

To provide another layer of security, you should limit your SSH logins to only certain users who need remote access
Become root
Edit your /etc/ssh/sshd_config file and add the following line:
Go all the way down of the file by typing Shift + G in the vi file editor.

AllowUsers userl user2

Replace "user1" and "user2" with real user names.
Any time you add any new parameters always put it a comment, in that way you know waht the next line will do or be
about. For example # Allow the following user only, then you add the desired line.

Then restart the sshd daemon by running systemctl restart sshd

Use a different port

By default SSH port runs on 22. Most hackers looking for any open SSH servers will look for port 22 and changing can
make the system much more secure
Become root

Edit your /etc/ssh/sshd_config file and remove # from the following line and change the port number
Port 22

Change the port from 22 to any other port number.
Make sure whatever the port that you're assigning to this SSH is not being used by any other programs.
You could search online to see which ports are available.
Then restart the sshd daemon by running systemctl restart sshd

If trying to ssh through PuTTY remember to change the port as well to the port you assigned.

SSH-Keys - Access Remote Server without Password

If we have a Linux machine and we want to access another Linux machine. That another Linux machine is for us a remote
machine.
Two reasons to access a remote machine
Repetitive logins - logging from machine A to machine B in repetitive times, maybe 10, or 20 times a day, and you
do not want to enter a username and password again and again.
Automation through scripts - If you have scripts that are sitting on your server A and you need to execute those
scripts on server B, so that is an automation that will run on B, buy every time you run it from A to B it will prompt a
username and password.

Keys are generated at user level

mmarin
root
Client = MyFirstLinuxVM Server = LinuxCentOS7
SSH
Username?
Password?
Generate Keys Copy over the Keys from

client to server

SSH

You can see this process as a person who wants to enter a house but every time he wants to and does not have the key
he has to ring the bell (input credentials)

But if he goes through a verification process and actually hands the key to the house owner he will now be verified and
won't need to ring the bell again.

Steps to get this process to work:
Client = MyFirstLinuxVM

Step 1 - Generate the Key
Run ssh-keygen

On the client machine (the one that is trying to go to the server), we have to generate the Keys.
Step 2 - Copy the key to the server.

Run ssh-copy-id root@192.168.1.x

root is included because you generated the keys as root so you specify as root and @ the IP address of the
server that you are copying to.

Step 3 - Login from client to server.
Run ssh root@192.168.1.x

Or alternatively run ssh -1 root 192.168.1.x

Both commands are the same, they actually let you in from one machine to another, on the account root.

Example using ssh-keygen command:

[root@localhost ~]# ssh-keygen

Command to generate SSH keys.

Output:

Generating public/private rsa key pair.

Enter file in which to save the key (/home/mmarin/.ssh/id_rsa): Created directory '/home/mmarin/.ssh'.
Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/mmarin/.ssh/id_rsa

Your public key has been saved in /home/mmarin/.ssh/id_rsa.pub

The key fingerprint is:

SHA256:AZal/m8QkigZ0r4D/aU3Bxj8GT1iqGaKG1l1zsVKIbJY mmarin@localhost. localdomain

The key's randomart image is:

+———[RSA 3072]—+

| 0 =0+.. |
| o EaXodrc |
| B = Oo= |
| =0 =B |
|.= o B oSo . |
|+ . o 0o 0.0 |
| o 1 0 @ao |
I |
| |

+————[SHA256] ————— +

By default the system is going to save the key in the /root/.ssh/id_rsa/ directory (On local machine or client)
If you wanted to change this location you could specify it at the moment it is prompted.
To leave it default just simply hit Enter.
Next step is asking you to enter passphrase.
If you are in the production environment, in the corporate environment it is recommended to put in a passphrase.
Anything that you like could be that passphrase.
To leave it empty just hit Enter.
After those prompts the key is displayed and saved to a file that is also displayed for the user to use.
Now we need to copy this key to our server, so next time we log into the server, the server would know and let you in
without a password.

Example using ssh-copy-id command:

[root@localhost ~]# ssh-copy-id root@192.168.1.58

Attempting to copy the key to the root user of the 192.168.1.58 server.
This IP is only used for the sake of exemplification.

Output:

/usr/bin/ssh—copy-id: INFO: Source of key(s) to be installed: "/home/mmarin/.ssh/id_rsa.pub"
/usr/bin/ssh—-copy-id: INFO: attempting to log in with the new key(s), to filter out any that are
already installed

/usr/bin/ssh—-copy-id: INFO: 1 key(s) remain to be installed —-if you are prompted now it is to install
the new keys

root@192.168.1.58's password:

Now it is going to actually ask you for the root password of the server because you are going in for the first time. And of
course once you add that key, it's gonna ask you that as just the last time.

Output after password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'root@192.168.1.58'"
and check to make sure that only the key(s) you wanted were added.

» Now that key is added to the server and it is added to /root/.ssh/authorized_keys file.
= You could actually go into that directory, /root/.ssh/ by doing cd /root/.ssh/ on the server and then running s -1
command to see the contents of the directory.
» Afile named "authorized_keys" will be in there.

Example using cat command:
[root@server ~]$ cat /root/.ssh/authorized_keys

» Using cat command to check the contents of the /root/.ssh/authorized_keys file (Checking what the actual key is).

Output:

ssh—-rsa AAAAB3NzaClyc2EAAAADAQABAAABAQDtZvCgdvv1lwQil8n1r@jqGkob
D5jBGnZ1/J41Poobw3Hk8R0o8b0x9wv/TQtauUpxralTUx2YI6z5nUT2e00a4/Yb
sQyB1LfdYXX8z/60kau7+B0Y]jq3IfV57dEW0oCs37DmS5xLi5QyBsCvPYYaneWP/
ri3sphT35n8I1Cd84n0YZSti7RxsxBz/jR/181iDZMEeQvNcCAVGOOTSz2pX/9dzs
9GdpeSFFopYpf6eAPRxx76Tn7LSX8Tg92ws1nrAZGvX38szTgbB4yI3rq@uMgxn
pruRwptwCsfSpTnWiycq7xjwGCS2zh/DOKGiS/bxLZIJEVOLtkudCblzLXqgx/0v1
0X root@yFirstLinuxVM

» This entire key has been copied as root from the machine "MyFirstLinuxVM" (Last line of the file)
» Now if you come and SSH from the "MyFirstLInuxVM" to the server you are not going to be prompted a password.

