
Control access to files
Linux #redhat #filesystem #files

File Permissions

Example using ls -l command:

Output:

Protect your environment, your files, and your directories from being viewed by other users or being deleted by other users
UNIX is a multi-user system. Every file and directory in your account can be protected from or made accessible to other
users by changing its access permissions. Every user has responsibility for controlling access to their files.
Permissions for a file or directory may be restricted to by types
There are 3 types of permissions

r - read
w - write
x - execute = running a program

If a file itself is a script or a program it has an x permission, which determines if it is executable.
If a user is allowed to use a program they would have an executable permissions to it.

Each permission (rwx) can be controlled at thee levels:
u - user = yourself
g - group = can be people in the same project
o - other = everyone on the system

File or Directory permission can be displayed by running ls -l command
E.g. -rwxrwxrwx

The first bit shows it is a file
The next three bit shows it has read, write, and executable permissions by the user.
The second three bits are for the group.
The third three bits are for the others.

Command to change permission.
chmod

[user@localhost ~]$ ls -l jerry

We are looking for the file named "jerry"

-rw-rw-r--. 1 mmarin mmarin 0 Jun 4 15:31 jerry

The second three bits shows that the user "mmarin" has only read and write permissions
The user does not have executable permission, it means this file it is not a script. If it was a script. it would have an x
to it.

The next three bits show that the group itself also has r to read, and w to write to the file
The last three bits shows that the "others" can only read this file.

Remove permissions -

Example using chmod command:

Output from ls -l jerry :

Example using chmod command:

A file with no permissions would look like this:

Remove or add permissions to ALL levels

Example using chmod command:

Output from `ls - l jerry:

What happens if you want to read, write, or delete a restricted file?

Example using rm command:

[user@localhost ~]$ chmod g-w jerry

chmod is changing the permissions of the file named "jerry"
The g option specifies that changes will be done at the group level (the second three bites)
The -w term specifies that we are taking the write permission out of the group level of the "jerry" file.

-rw-r--r--. 1 mmarin mmarin 0 Jun 4 15:31 jerry

Now it has no w in the second three bites

[user@localhost ~]$ chmod u-w jerry

chmod removing the write permission from the user level of the "jerry" file

----------. 1 mmarin mmarin 0 Jun 4 15:31 jerry

[user@localhost ~]$ chmod a-r jerry

chmod is changing the permissions of the file named "jerry"
The a option stands for "all" and specifies that changes will be done for ALL levels (user, group, others).
The -r terms specifies that we are removing the read permission for all levels

--w--w----. 1 mmarin mmarin 0 Jun 4 15:31 jerry

Note there is no permission r in any of the levels.

Output:

Example using cat command:

Output:

Add permissions +

Example using chmod command:

Output from ls -l jerry :

Example using chmod command:

Output from ls -l jerry :

[user@localhost ~]$ rm jerry

Attempting to remove the file called "jerry" which has no permissions

rm: remove write-protected regular empty file 'jerry'?

if you type "yes" next to this warning the file will actually be deleted because you are the actual creator of the file. But it
does give you a warning sign.

[user@localhost ~]$ cat jerry

We know the "jerry" file has no permissions

cat: jerry: Permission denied

There is no read permission to read this file with the cat command

[user@localhost ~]$ chmod g+w jerry

chmod is changing the permissions of the file named "jerry"
The g option specifies that changes will be done at the group level (the second three bites)
The +w term specifies that we are adding the write permission to the group level of the "jerry" file.
This line revert the effects done by the previous command.

-rw-rw-r--. 1 mmarin mmarin 0 Jun 4 15:31 jerry

[user@localhost ~]$ chmod u+rw jerry

Add read AND write permissions in the user level to the "jerry" file

Example using chmod command:

Output from ls -l jerry :

Example using chmod command:

Output from ls -l jerry :

Directories and the x permission

Example of how a directory with this characteristic would look like using the ls -l command:

Example using chmod command:

Output from ls -l :

-rw-------. 1 mmarin mmarin 0 Jun 4 15:31 jerry

[user@localhost ~]$ chmod g+rw jerry

Add read AND write permissions in the group level to the "jerry" file

-rw-rw----. 1 mmarin mmarin 0 Jun 4 15:31 jerry

[user@localhost ~]$ chmod o+r jerry

Add read permission in the "others" level to the "jerry" file

-rw-rw-r--. 1 mmarin mmarin 0 Jun 4 15:31 jerry

If a directory contains the x permission for any user, group or others is beacause you could cd into that directory.

drwxr-xr-x. 2 mmarin mmarin 6 Jun 5 12:34 seinfeld

You are allowed to use:
cd seinfield/

Remember: When attempting to access a directory, it always has to end with the / sign as it is not a file.
To return to the previous directory location you can use cd ..

[user@localhost ~]$ chmod a-x seinfeld/

Removing the x (executable) permission at ALL (a) levels for the 'seinfeld/' directory.

drw-r--r--. 2 mmarin mmarin 6 Jun 5 12:34 seinfeld

Example using cd command:

Output:

This is how you can protect your files and directories from being manipulated or deleted by accident.

File Ownership
There are 2 owners of a file or directory

Command to change file ownership

Recursive ownership change option (Cascade)

You have to become root or use sudo in order to change the ownership or group ownership of a certain file.

Example using chown command:

Output from ls -l lisa :

Example using chgrp command:

[user@localhost ~]$ cd seinfeld/

Since we removed the x permission from the 'seinfeld/' directory this command won't be allowed to run

-bash: cd: seinfeld/: Permission denied

User and group
User is the one who creates the directory
The group is the group that the user belongs to

If you belong to two different groups and a permission applies to only one of the groups. As long as you are in
that group, then you would have that permission.

chown and chgrp
chown changes the ownership of a file
chgrp changes the group ownership of a file

-R - It will not only change the indicated directory but also all the files and directories within that parent directory.

[root@localhost mmarin]# chown root lisa

Note we are in the home directory of the "mmarin" user (/home/mmarin/).
chown is changing the ownership of the file called "lisa" to the root user.

-rw-r--r--. 1 root mmarin 0 Jun 4 16:00 lisa

Output from ls -l lisa :

Attempting to remove a file owned by other user inside your home directory

Example using rm command:

Output:

Example using ls -ltr command:

Output:

Example using touch command:

[root@localhost mmarin]# chgrp root lisa

chgrp is changing the group ownership of the lisa file to the root group.
Note that the root group is not the same as the root user.

-rw-r--r--. 1 root root 0 Jun 4 16:00 lisa

[user@localhost ~]$ rm lisa

rm: remove write-protected regular empty file 'lisa'? y

Note that when the file you want to delete is not owned by yourself it will throw out a warning before proceeding to delete
with the rm command.
You can enter "y" to ignore the warning and actually delete the "lisa" file.
The reason the file is gone now is because when you go one step back to the home directory /home/ (you can do this by
doing cd .. to go a step back) You will see that the "mmarin" user home directory, has the permission of yourself to read,
write, and execute. Meaning anything inside of the directory you could read, you could write, and then you could execute.
So regardless if whoever puts the file in whoever owns the file or whichever groups owns it, you could go ahead and still
delete it.

[user@localhost home]$ ls -ltr

Note we are currently located in the /home/ directory.

total 4
drwx------. 3 spiderman superheros 78 Jun 9 18:14 spiderman
drwx------. 3 babubutt babubutt 78 Jun 10 18:10 babubutt
drwx------. 4 ironman superheros 113 Jun 11 11:47 ironman
drwx------. 20 mmarin mmarin 4096 Jun 12 01:16 mmarin

We can clearly see the rwx permissions for our user to manipulate files inside this directories.

Output:

Example using ls -l / command:

Output:

Example using rm command:

[user@localhost etc]$ touch testfile

Note the user is currently located at the /etc directory.
touch is attempting to create a file inside this /etc directory named "testfile"

touch: cannot touch 'testfile': Permission denied

It won't allow you because you do not have write permission for this file.
How do you check this?, you do ls -l / in any location.

[user@localhost ~]$ ls -l /

total 28
dr-xr-xr-x. 2 root root 6 Aug 9 2021 afs
lrwxrwxrwx. 1 root root 7 Aug 9 2021 bin -> usr/bin
dr-xr-xr-x. 5 root root 4096 Jun 3 13:38 boot
drwxr-xr-x. 20 root root 3300 Jun 12 00:14 dev
drwxr-xr-x. 132 root root 8192 Jun 12 01:05 etc
drwxr-xr-x. 6 root root 68 Jun 10 18:10 home
lrwxrwxrwx. 1 root root 7 Aug 9 2021 lib -> usr/lib
lrwxrwxrwx. 1 root root 9 Aug 9 2021 lib64 -> usr/lib64
drwxr-xr-x. 2 root root 6 Aug 9 2021 media
drwxr-xr-x. 2 root root 6 Aug 9 2021 mnt
drwxr-xr-x. 2 root root 6 Aug 9 2021 opt
dr-xr-xr-x. 304 root root 0 Jun 12 00:14 proc
dr-xr-x---. 4 root root 4096 Jun 11 12:22 root
drwxr-xr-x. 45 root root 1160 Jun 12 00:15 run
lrwxrwxrwx. 1 root root 8 Aug 9 2021 sbin -> usr/sbin
drwxr-xr-x. 2 root root 6 Aug 9 2021 srv
dr-xr-xr-x. 13 root root 0 Jun 12 00:14 sys
drwxrwxrwt. 17 root root 4096 Jun 12 01:09 tmp
drwxr-xr-x. 12 root root 144 Jun 3 13:10 usr
drwxr-xr-x. 20 root root 4096 Jun 3 13:37 var

This is the most general view of all the directories of the machine.
If we notice, the 'etc' directory is owned by root and the group is owned by group as well. Now that only the root user has
the permission to write to it.

drwxr-xr-x. 132 root root 8192 Jun 12 01:05 etc

What about the people who are in root's group?
They do not have a permission to write to it (no w permission at the group level)

What about everybody else?
They do not have a permission to write to it (no w permission at the others level)

Output:

Example using ls -l command:

Output:

Create and configure set-GID directories for collaboration

Set-GID directories are directories that have the set-GID bit set. When a file is created in a set-GID directory, the file inherits the
group ownership of the directory instead of the user’s default group ownership. This is useful for collaboration because it allows
multiple users to work on the same files with the same group ownership.

To create a set-GID directory, you can use the following commands:

This will create a directory with the set-GID bit set. When a user creates a file in this directory, the file will have the same group
ownership as the directory

Umask & base permissions

[user@localhost etc]$ rm test123

Note that a file named "test123" was previously created by the root user inside the /etc directory.
In this line a normal user is attempting to use the rm command to delete the "test123" file from the /etc directory

rm: remove write-protected regular empty file 'test123'? y
rm: cannot remove 'test123': Permission denied

Note that even after ignoring the warning by inputting "y" (yes) we still cannot delete the file. The user has permission
denied.

Why?
Go to cd / and run ls -l and check for the /etc directory permissions

[user@localhost /]$ ls -l

Note we are currently in the / directory.

..
drwxr-xr-x. 132 root root 8192 Jun 12 01:05 etc
...

Note there is no w (write) permission for neither group or others levels.

$ sudo mkdir /path/to/directory

$ sudo chmod g+s /path/to/directory

More on Chapter 11. Managing file system permissions
Change default umask value with default umask value in RHEL 9.0 is 0022 for both root and normal user!

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/managing-file-system-permissions_configuring-basic-system-settings#assembly_managing-file-permissions_managing-file-system-permissions
https://www.linux.org/threads/default-umask-value-in-rhel-9-0-is-0022-for-both-root-and-normal-user.42941/

