
Manage basic storage
Linux #redhat #storage #filesystem

Storage
3 types of storage that are attached to your system

Disk Partition
Commands for disk partition

From Monitor and manage Linux processes
Example using df command:

Output:

Local storage
Come pre-built, and pre-configures inside of your computer

SAN (Storage Area Network)
Attaches to your computer through a fiber cable, fiber cables are now coming in with 8G of speed and 16 gigabit of
speed.

NAS (Network Attached Storage)
Anything that attaches to your computer through NFS or through an IP, or through a CAT5 cable. Windows Samba is
a common example of NAS.

df - Tells you your disk information, how much disk is used, where is it partitioned to?
fdisk - Tells you how much the disk total size is and how many partitions has been created out of the disk.

[user@localhost ~]$ df -h

The -h option stands for "human readable" and specifies to change the units to be more readable to humans.

Filesystem Size Used Avail Use% Mounted on
devtmpfs 4.0M 0 4.0M 0% /dev
tmpfs 5.1G 0 5.1G 0% /dev/shm
tmpfs 2.1G 9.2M 2.1G 1% /run
/dev/mapper/rhel-root 17G 7.6G 9.5G 45% /
/dev/sda1 960M 304M 657M 32% /boot
tmpfs 1.1G 100K 1.1G 1% /run/user/1000

Please note: Your output might be different because your Linux system is configured with different disk space and a
different volume name

From Access Linux files systems

The fdisk command

Example using fdisk command:

Output:

To create a new disk:

You cannot run fdisk by itself (you have to specify an option)

[root@localhost ~]# fdisk -l

The -l option stands for "list" and specifies to list the partition tables for the specified devices and then exit.

Disk /dev/sda: 20 GiB, 21474836480 bytes, 41943040 sectors
Disk model: VBOX HARDDISK
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0xc8a29178

Device Boot Start End Sectors Size Id Type
/dev/sda1 * 2048 2099199 2097152 1G 83 Linux
/dev/sda2 2099200 41943039 39843840 19G 8e Linux LVM

Disk /dev/mapper/rhel-root: 17 GiB, 18249416704 bytes, 35643392 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk /dev/mapper/rhel-swap: 2 GiB, 2147483648 bytes, 4194304 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

It will list all your filesystem and where is it mounted.
Why is there LVM on the 19G (/dev/sda2) drive? and why not on the 1G one (/dev/sda1)?

It's because sda1 has been mounted on /boot
You can verify this by running df -h and see where the /dev/sda1 disk is mounted on.
For /boot or sometimes the swap you do not need an LVM filesystem.

LVM allows you to create redundancy within your filesystem.
Note the 20G disk is divided into two subdisks: a 17G disk for root, and a 2G disk for swap.

Let's say you attach a new disk to your Linux OS, then you have to come here and run fdisk and specify the the name of
the disk.
Example using fdisk command:

Adding Disk and Creating Partition

Adding space in your VM

Steps to add a disk to your VM:

[root@localhost ~]# fdisk /dev/sdb

As the name /dev/sda is already taken (that is our principal disk), we can use the name /dev/sdb .
When running this command it will give you more options on how you could partition that disk.

Purpose? = Out of Space, Additional Apps, etc.
Maybe one partition is required for one application and the other partition is required for another application

Commands for disk partition
- df
- fdisk
\

Since for this note we do not have a physical server that we are working on, on which we would of course have to pull the
server out, add a new disk if you have a slot and then bring the system up. But now since we are working on a virtual
environment it's a lot easier to add a disk.

1. Power off your VM if running
2. Take a snapshot of your VM before adding a disk
3. Go to Settings -> Storage
4. Click on Controller: SATA
5. Click on add new storage attachment
6. Select Add Hard Disk
7. Click on create new disk
8. Leave the default VDI (VirtualBox Disk Image)
9. Leave Dynamically allocated default or if there is no option to leave this checked then check Pre-allocate Full Size instead

10. Pick a name for the disk (anything will work)
11. Select how much space you want to add
12. Click on Create or Finish
13. Once you create you'll see you have a new disk, now click OK, or Choose while selecting the new disk

Create a partition with the fdisk utility

Example using fdisk command:

Output:

After adding a new disk your VM storage should look like this.
Note the name of the new disk is "datadisk.vdi"

1. Become root
2. Run fdisk -l

[root@localhost ~]# fdisk -l

Disk /dev/sda: 20 GiB, 21474836480 bytes, 41943040 sectors
Disk model: VBOX HARDDISK
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0xc8a29178

Device Boot Start End Sectors Size Id Type
/dev/sda1 * 2048 2099199 2097152 1G 83 Linux
/dev/sda2 2099200 41943039 39843840 19G 8e Linux LVM

Disk /dev/sdb: 2 GiB, 2147483648 bytes, 4194304 sectors
Disk model: VBOX HARDDISK
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk /dev/mapper/rhel-root: 17 GiB, 18249416704 bytes, 35643392 sectors

Example using fdisk command:

Output:

Example using m command:

Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk /dev/mapper/rhel-swap: 2 GiB, 2147483648 bytes, 4194304 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

You'll notice the first disk that we added while we were building the system, this is for 20G and it is /dev/sda
It has two partitions, one for swap, and one for the regular Linux LVM

The second disk that we added is right below the partitions from the first disk. You notice this disk has 2147 megabytes
which is about 2G and has unite sectors and all that information there.
The last two paragraphs of information is about the partition information about the first disk (rhel-root and rhel-swap
partitions).

3. Enter the fdisk utility

[root@localhost ~]# fdisk /dev/sdb

Note /dev/sdb is the name of the 2G disk we previously added to our VM

Welcome to fdisk (util-linux 2.37.4).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Device does not contain a recognized partition table.
Created a new DOS disklabel with disk identifier 0x33fb7333.

Command (m for help):

When you hit enter you'll notice it will bring up to the fdisk menu or portal.

Command (m for help): m

Help:

 DOS (MBR)
 a toggle a bootable flag
 b edit nested BSD disklabel
 c toggle the dos compatibility flag

 Generic
 d delete a partition
 F list free unpartitioned space
 l list known partition types
 n add a new partition

Example using n command:

 p print the partition table
 t change a partition type
 v verify the partition table
 i print information about a partition

 Misc
 m print this menu
 u change display/entry units
 x extra functionality (experts only)

 Script
 I load disk layout from sfdisk script file
 O dump disk layout to sfdisk script file

 Save & Exit
 w write table to disk and exit
 q quit without saving changes

 Create a new label
 g create a new empty GPT partition table
 G create a new empty SGI (IRIX) partition table
 o create a new empty DOS partition table
 s create a new empty Sun partition table

Here is the list of different commands we have available to use
The one that will be useful in this case is n because we are creating a new partition

Command (m for help): n
 p primary (0 primary, 0 extended, 4 free)
 e extended (container for logical partitions)
Select (default p): p
Partition number (1-4, default 1): 1
First sector (2048-4194303, default 2048):
Last sector, +/-sectors or +/-size{K,M,G,T,P} (2048-4194303, default 4194303):

Created a new partition 1 of type 'Linux' and of size 2 GiB.

Command (m for help):

The first thing this command does is ask us what will be the type of the partition, primary or extended?
We are doing this with a new disk so we can select p for primary

Then it asks for the primary partition number
We can leave it like that and hit Enter or type 1 (most of the time we want or primary partition to be number 1)

Then it asks for the first sector
You can also leave it default to 2048

Then it asks for the last sector
This is also fine, you can leave it default to 4194303
If you want to create 2 partitions from this disk, and you want each one to be 1G, then you could do +1G (type this at
the moment that the Last sector question is prompted)
If you want the entire disk space for 1 partition you can just hit Enter.

Now it's done. Created a new partition 1 of type 'Linux' and of size 2GiB.
But it will not be created until we enter w to write changes.

Example using w command:

Example using fdisk command:

Output:

Make a filesystem

Example using mkfs command:

Output:

Command (m for help): w
The partition table has been altered.
Calling ioctl() to re-read partition table.
Syncing disks.

Now it IS done.

[root@localhost ~]# fdisk -l

Run fdisk -l to verify the changes in the partitions of the new disk

...
Disk /dev/sdb: 2 GiB, 2147483648 bytes, 4194304 sectors
Disk model: VBOX HARDDISK
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x33fb7333

Device Boot Start End Sectors Size Id Type
/dev/sdb1 2048 4194303 4192256 2G 83 Linux
...

Now you can see the /dev/sdb1 partition that you just created with the fdisk utility.\
Automatically when you create one partition, the first partition on a disk, it assigns the number one.
Now the volume is created but now we have to assign a filesystem type.

The latest filesystem that we have in Linux is 'xfs'.

[root@localhost ~]# mkfs.xfs /dev/sdb1

The mkfs commands stands for "make filesystem"
The .xfs extension specifies that the new filesystem to be created will be of the type 'xfs'
Then a valome has to be specified (use the volume that you recently created)

meta-data=/dev/sdb1 isize=512 agcount=4, agsize=131008 blks
 = sectsz=512 attr=2, projid32bit=1

Mount the volume

Example using mount command:

Output from df -h :

Enable to mount the volume (on boot)

Example using vi command:

 = crc=1 finobt=1, sparse=1, rmapbt=0
 = reflink=1 bigtime=1 inobtcount=1 nrext64=0
data = bsize=4096 blocks=524032, imaxpct=25
 = sunit=0 swidth=0 blks
naming =version 2 bsize=4096 ascii-ci=0, ftype=1
log =internal log bsize=4096 blocks=16384, version=2
 = sectsz=512 sunit=0 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0

When you run this line you'll get all that message with all the details. how the file system created, what are the other
information, size sector, and a whole bunch of stuff.
Now the filesystem is created, but now we have to mount it to a certain mount point.

Create a directory under root and call it "data"
mkdir /data

Use the mount command to mount the volume into that new directory

[root@localhost ~]# mount /dev/sdb1 /data

We are mounting that partition that we created to out filesystem, to our directory that we just created as /data
How do you verify the volume was mounted

run df -h to list the filesystems

Filesystem Size Used Avail Use% Mounted on
devtmpfs 4.0M 0 4.0M 0% /dev
tmpfs 5.1G 0 5.1G 0% /dev/shm
tmpfs 2.1G 9.2M 2.1G 1% /run
/dev/mapper/rhel-root 17G 7.2G 9.8G 43% /
/dev/sda1 960M 411M 550M 43% /boot
tmpfs 1.1G 96K 1.1G 1% /run/user/1000
/dev/sr0 991M 991M 0 100% /run/media/mmarin/RHEL-9-4-0-BaseOS-x86_64
/dev/sdb1 2.0G 47M 1.9G 3% /data

Now you can see the new /dev/sdb1 filesystem from the partition that we just created
Now we could write to it whatever that we wanted to do.
Now every time your system reboots, it will not mount this. So how can you make it enabled that it will get mounted at a
system reboot?

You have to add an entry into the fstab file.
fstab has all the information about your partitions.

File editor:

Verify it was mounted on boot\

In case you want to unmount it

Example using umount command:

[root@localhost ~]# vi /etc/fstab

Opening the file editor with vi to edit the fstab file

#
/etc/fstab
Created by anaconda on Mon Jun 3 18:07:09 2024
#
Accessible filesystems, by reference, are maintained under '/dev/disk/'.
See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info.
#
After editing this file, run 'systemctl daemon-reload' to update systemd
units generated from this file.
#
/dev/mapper/rhel-root / xfs defaults 0 0
UUID=cd303319-8ed9-4d5b-8812-88970a2fa4ab /boot xfs defaults 0 0
/dev/mapper/rhel-swap none swap defaults 0 0

/dev/sdb1 /data xfs defaults 0 0

Come down all the way to the bottom, hit O to add a new line then type:
/dev/sdb1 /data xfs defaults 0 0 (every fields is separated by a Tab key)

First is the partition
Next is where it is being mounted to
Then the type of filesystem for that partition
Then the rest leave that default with the defaults keyword
Then add a 0
Finally add another 0

These are the options that it would run filesystem, check when the system boots or not.

Note that if you made a mistake you will have a problem booting your system. Make sure you are typing it correctly

After adding the previous line to the fstab file you can run init 6
The init command is a systemd system and service manager

The 6 option specifies to automount units provide automount capabilities, for on demand mounting of file
systems as well as parallelized boot-up.

When you run this command, your system will reboot
Run df -h to check if the partition was mounted during boot

If it appears the process was completed successfully and you can start using that partition

Use the umount command and select the directory to which the volume is mounted

If you want to mount the volume again
Example using mount command:

[root@localhost ~]# umount /data

Remember that /data was the directory that we created in order to mount our /dev/sdb1 partition
Now if you run df -h the /dev/sdb1 filesystem will no longer appear

[root@localhost ~]# mount -a

The -a option stands for "all" and specifies to mount all filesystems (of the given types) mentioned in /etc/fstab
(except for those whose line contains the noauto keyword).

