
Manage Files from the command line
Linux #redhat #filesystem #links #pipe

Introduction to Filesystem

Access your machine files

Example using cd command:

Example using ls command:

What is a Filesystem?
It is a system used by an operating system to manage files. The system controls how data is saved or retrieved.
See the filesystem as an organized closet
A filesystem avoids a cluttered way of organizing things

Operating system stores files and directories in an organized and structured way
System configuration file = Folder A
User files = Folder B
Log files = Folder C
Commands or scripts = Folder D and so on

There are many different types of filesystems. In general, improvements have been made to filesystem with new releases
of operating systems and each new filesystem has been given a different name

Ex. ext3, ext4, xfs, NTFS, FAT etc.
'ext' and 'xfs' are known to be Linux filesystems
'NTFS' and 'FAT' are recognized as Windows filesystems

With a Filesystem, the OS knows exactly which folder to look for when needed

In a Windows OS you can simply run the File Explorer built-in program and look for "This PC" in the list of directories
shown at the left. Once there just click on the name of the machine and you will see all the directories branched from your
machine. In Windows everything starts from the "C" drive.
In a Linux OS you have to go into cd / because everything starts from the / , which is the root directory.

[user@localhost ~]$ cd /
[user@localhost /]$

This command will change the current directory to the root directory " / "
No Output

[user@localhost /]$ ls -l

Use the ls command paired with the specifier -l to show a long listing format of the directories inside the current parent
directory.
ls -l lists different fields
This is useful to confirm the current directory location of the terminal

Output:

Example using pwd command:

Output:

Directory Listing Attributes

Type # of Links Owner Group Size Month Day Time Name

drwxr-xr-x. 21 root root 4096 Feb 27 13:33 var

lrwxrwxrwx. 1 root root 7 Feb 27 13:15 bin

-rw-r-r-- 1 Root Root 0 Mar 2 11:15 testfile

1st field (type)

2nd field (number of links)

total 24
dr-xr-xr-x. 2 root root 6 Aug 9 2021 afs
lrwxrwxrwx. 1 root root 7 Aug 9 2021 bin -> usr/bin
dr-xr-xr-x. 5 root root 4096 Jun 3 13:38 boot
drwxr-xr-x. 20 root root 3300 Jun 4 13:32 dev
drwxr-xr-x. 132 root root 8192 Jun 4 13:32 etc
drwxr-xr-x. 3 root root 20 Jun 3 13:24 home
lrwxrwxrwx. 1 root root 7 Aug 9 2021 lib -> usr/lib
lrwxrwxrwx. 1 root root 9 Aug 9 2021 lib64 -> usr/lib64
drwxr-xr-x. 2 root root 6 Aug 9 2021 media
drwxr-xr-x. 2 root root 6 Aug 9 2021 mnt
drwxr-xr-x. 2 root root 6 Aug 9 2021 opt
dr-xr-xr-x. 300 root root 0 Jun 4 13:32 proc
dr-xr-x---. 4 root root 140 Jun 3 13:37 root
drwxr-xr-x. 45 root root 1160 Jun 4 13:33 run
lrwxrwxrwx. 1 root root 8 Aug 9 2021 sbin -> usr/sbin
drwxr-xr-x. 2 root root 6 Aug 9 2021 srv
dr-xr-xr-x. 13 root root 0 Jun 4 13:32 sys
drwxrwxrwt. 17 root root 4096 Jun 4 13:34 tmp
drwxr-xr-x. 12 root root 144 Jun 3 13:10 usr
drwxr-xr-x. 20 root root 4096 Jun 3 13:37 var

[user@localhost ~]$ pwd

The pwd command outputs your current directory location

/home/mmarin

Any file that begins with "d" is a directory
Any file that begins with "l" is a link
Any file with nothing on it is a regular file

3rd field (owner)

4th field (group)

And so on with the next fields...

Creating Files and Directories

Creating Files (3 ways)

Example using touch command:

Example using touch command:

Example using ls command:

Output:

The 2nd field tells you about the number of links it has or heart links that attach to the directory

The third field tells you the owner, who owns it.

The fourth field tells you the group of the directory. Which group owns that directory?

touch - creates an empty file.
cp - copying an existing file and creating a new file at the destination location
vi - the vi editor command

[user@localhost ~]$ touch jerry

[user@localhost ~]$ touch kramer

A name for the file must be stated in order to use the touch command to create a file

[user@localhost ~]$ ls -ltr

ls shows the list of files and directories in the current location
-l formats the list adding fields
t makes the list ordered by time (newer on top)
r reverses the list so that newer items appear on the bottom
Is often used to verify that a certain file was created

total 0
drwxr-xr-x. 2 mmarin mmarin 6 Jun 3 13:42 Videos
drwxr-xr-x. 2 mmarin mmarin 6 Jun 3 13:42 Templates
drwxr-xr-x. 2 mmarin mmarin 6 Jun 3 13:42 Public

*Example using cp command:

Example using vi command:

File editor:

Example using touch command:

Creating directories

Example using mkdir command:

drwxr-xr-x. 2 mmarin mmarin 6 Jun 3 13:42 Pictures
drwxr-xr-x. 2 mmarin mmarin 6 Jun 3 13:42 Music
drwxr-xr-x. 2 mmarin mmarin 6 Jun 3 13:42 Desktop
drwxr-xr-x. 2 mmarin mmarin 77 Jun 4 14:26 Downloads
drwxr-xr-x. 3 mmarin mmarin 24 Jun 4 15:00 Documents
-rw-r--r--. 1 mmarin mmarin 0 Jun 4 15:31 jerry
-rw-r--r--. 1 mmarin mmarin 0 Jun 4 15:32 kramer

[user@localhost ~]$ cp jerry lex

cp is the command used to copy files and create a new one
In this case the file 'jerry' is copied
The new file created is named 'lex' and is a copy from the file 'jerry'

[user@localhost ~]$ vi homer

The vi command creates a file named 'homer'

~
~
~
~
:

In contrast with touch and cp vi creates files and opens the file editor to start typing.
if you want to exit the file editor in vi type the following:

:wq! - This is also referred as "bang"
While typing it, it will show up in the last line.

[user@localhost ~]$ touch bart lisa marge

This single line creates three files using the touch command

Creating directories
mkdir

Example using mkdir command:

What happens if you do not have permission to modify a directory?

Example using cd command:

Example using touch command to create a file inside a restricted directory:

Output:

File Maintenance Commands

Copy

Current files shown by ls -ltr

[user@localhost ~]$ mkdir seinfield

mkdir creates a directory in the current parent directory location
A name for the directory has to be specified
Only allowed when the user has sufficient rights to modify a directory

Usually not allowed in the / directory

[user@localhost ~]$ mkdir superman simpson

mkdir also supports creating multiple directories in a single line

[user@localhost ~]$ cd /etc

cd allows to change the current directory to another specified directory

[user@localhost etc]$ touch test123

touch: cannot touch 'test123': Permission denied

cp - copies one file or directory to another
rm - remove a file
mv - move the location of a file from one to another OR to rename a file
mkdir - make directory
rmdir or rm -r - remove a directory
chgrp - ownership of a file at the group level
chown - ownership of a file at the user level

Example using cp command:

Example using cp command:

Add file content and check file content

Example using echo command:

Example using cat command:

total 0
drwxr-xr-x. 2 mmarin mmarin 6 Jun 3 13:42 Videos
drwxr-xr-x. 2 mmarin mmarin 6 Jun 3 13:42 Templates
drwxr-xr-x. 2 mmarin mmarin 6 Jun 3 13:42 Public
drwxr-xr-x. 2 mmarin mmarin 6 Jun 3 13:42 Pictures
drwxr-xr-x. 2 mmarin mmarin 6 Jun 3 13:42 Music
drwxr-xr-x. 2 mmarin mmarin 6 Jun 3 13:42 Desktop
drwxr-xr-x. 2 mmarin mmarin 77 Jun 4 14:26 Downloads
drwxr-xr-x. 3 mmarin mmarin 24 Jun 4 15:00 Documents
-rw-r--r--. 1 mmarin mmarin 0 Jun 4 15:31 jerry
-rw-r--r--. 1 mmarin mmarin 0 Jun 4 15:32 kramer
-rw-r--r--. 1 mmarin mmarin 0 Jun 4 15:39 george
-rw-r--r--. 1 mmarin mmarin 0 Jun 4 15:40 lex
-rw-r--r--. 1 mmarin mmarin 0 Jun 4 15:49 clark
-rw-r--r--. 1 mmarin mmarin 0 Jun 4 15:49 lois
-rw-r--r--. 1 mmarin mmarin 0 Jun 4 15:59 homer
-rw-r--r--. 1 mmarin mmarin 0 Jun 4 16:00 lisa
-rw-r--r--. 1 mmarin mmarin 0 Jun 4 16:00 bart
-rw-r--r--. 1 mmarin mmarin 0 Jun 4 16:00 marge
drwxr-xr-x. 2 mmarin mmarin 6 Jun 5 12:34 seinfeld
drwxr-xr-x. 2 mmarin mmarin 6 Jun 5 12:34 superman
drwxr-xr-x. 2 mmarin mmarin 6 Jun 5 12:35 simpson
echo

[user@localhost ~]$ cp george david

Newest file created will be named "david"
cp copied the file "george" and renamed "david" as a new file without removing the original "george" file

[user@localhost ~]$ cp david /tmp

cp can be used to copy a certain file to a specified directory

echo

cat

[user@localhost ~]$ echo "Hi my name is david" > david

In this case echo is inserting the text line "Hi my name is david" to the specified file named "david"

Output:

Remove

Example using rm command:

Move

Example using ls command:

Output:

Example using mv command:

Example using mv command:

[user@localhost ~]$ cat david

Hi my name is david

[user@localhost ~]$ rm apoho

rm is removing a file named "apoho"
The name of the file and directory has to be specified
Remember rm only can remove files, not directories

[user@localhost ~]$ ls -l lex

This use of the ls command checks if a specified file, in this case named "lex", is currently in the location directory
If the file exists in the current location it will output the fields of the file

-rw-r--r--. 1 mmarin mmarin 0 Jun 4 15:40 lex

[user@localhost ~]$ mv lex luther

mv is moving the source file named "lex" to "luther"
This is the renaming function of the mv command

Now the same "lex" file is named "luther"
It only changes the name, not the content

[user@localhost tmp]$ mv puddy /home/mmarin

Make directory

Example using mkdir command:

Remove directory

Example using rmdir command:

Example using rm -r command:

Example using rm -Rf command:

Change ownership

Become root

Example using whoami command:

Note the current location is '/tmp'
mv will move the file named "puddy" to the user home directory '/home/mmarin'
This is the moving function of the mv command

[user@localhost ~]$ mkdir gameofthrone

Creates a directory named "gameofthrone" in the current location

[user@localhost ~]$ rmdir gameofthrone

Removes the directory named "gameofthrone" from the current location

[user@localhost ~]$ rm -r gameofthrone

Removes the directory named "gameofthrone" from the current location

[user@localhost ~]$ rm -Rf gameofthrone

Removes the directory named "gameofthrone" from the current location
rm -Rf will forcefully remove sub-directories and its contents as well

Use whoami command to find out who we are
Use the su - command
Type the Admin password

Output:

Example using su - command:

Output:

Example using cd command:

Example using chgrp command:

Output from ls -ltr puddy

Example using chown command:

[mmarin@localhost ~]$ whoami

Returns the current user

mamarin

[user@localhost ~]$ su -

Password:
[root@localhost ~]#

Note how the prompt changed
Now we are root
Now instead of ending with a "$" it is a "#"

The root user provides all the permissions you can think of.

[root@localhost ~]# cd /home/mmarin

Travel to your user location using the cd command

[root@localhost ~]# chgrp root puddy

chgrp changes the ownership at level group from the file named "puddy" to 'root'
Note the order of this command is the following:

chgrp [new ownership name] [file name]

Also works with directories

-rw-r--r--. 1 mmarin root 19 Jun 5 12:57 puddy

Output from ls -ltr puddy

Example using chown command:

Output from ls -ltr puddy

Soft and Hard Links

[root@localhost ~]# chown root puddy

chown changes the ownership at level user from the file named "puddy" to 'root'
Note the order of this command is the following:
chown [new ownership name] [file name]

Also works with directories

-rw-r--r--. 1 root root 19 Jun 5 12:57 puddy

[root@localhost ~]# chown mmarin:mmarin puddy

In this instance of the chown command it sets the ownership from both user and group level to the user 'mmarin'

-rw-r--r--. 1 mmarin mmarin 19 Jun 5 12:57 puddy

A link is like a shortcut for convenience access to certain files
Can be seen as creating a shortcut in the Windows desktop to a certain file for much easier access

inode = Pointer or number of a file on the hard disk
Computer does not understand file names or any name
Computers understand numbers
Every time you create a file, the computer assigns a number to it on the hard disk and associate that number to it
Than number is called inode
Every time you try to read or retrieve that file it goes to that number

Soft Link = Link will be removed if file is removed or renamed
If you create a file and you create a soft link to that file. So onece it is created, it actually looks for that inode through
that file so that creates a soft link
If you remove the source file, it will remove the destination link

Hard Link = Deleting renaming or moving the original file will not affect the hard link
Commands to create a Hard and Soft links:

ln - Create a hard link
ln -s - Create a soft link

inode

my-hard-link myfile.txt my-soft-link

Steps to create a link in the '/tmp' location from a file in the home directory:

Example using ln -s command:

Output from ls -ltr :

Example using ls -li command:

Output:

1. Create a file in your home directory
[user@localhost ~]$ thouch hulk - creates a file named touch

2. Change to destination directory
[user@localhost ~]$ cd /tmp - travels to the '/tmp' directory

3. Create link:

[user@localhost tmp]$ ln -s /home/mmarin/hulk

Creates a soft link from the file 'hulk', retrieved from the home folder of the "mmarin" user, to the '/tmp' directory

...
-rw-r--r--. 1 mmarin mmarin 19 Jun 5 12:58 david
lrwxrwxrwx. 1 mmarin mmarin 17 Jun 5 14:37 hulk -> /home/mmarin/hulkls

Remember links start with "l"
You can use echo to insert file contents in the original file and if accessed from the link using cat it will show the same
contents from the original.

[user@localhost ~]$ ls -li

The i specifier of the ls command stands for inode. It will show the longlisting format and the inode number for each file
and directory

52155496 drwxr-xr-x. 2 mmarin mmarin 6 Jun 5 12:34 superman
52142028 drwxr-xr-x. 2 mmarin mmarin 6 Jun 3 13:42 Templates

Example using echo command:

Output from cat hulk :

Input and Output Redirects
There are 3 redirects in Linux

 2004497 drwxr-xr-x. 2 root root 6 Jun 5 13:49 uwu
 1578706 drwxr-xr-x. 2 mmarin mmarin 6 Jun 3 13:42 Videos

The inode number at the left is the number associated with that specific file.
This is the number that is remembered by your Operative System, not the name itself.
Each inode will be different from another. Even when links are present within the directory. A link will have a different inode
from that of the file it is linked to. This is only true when creating Soft Links
If a Soft Link is removed from a directory the link will still appear when using the ls -ltr command but it will be highlited
in red meaning that it is no longer usable

When trying to use the cat command to retrieve contents from a link to a source file that was deleted the terminal
will output cat: hulk: No such file or directory . In this case a source file named 'hulk' was previously
removed and when attempting to use a link in a different directory it won't work.
This only applies to Soft Links
So it is better to just remove the link as well

If a Hard Link is removed from a directory the link will still appear when using the ls -ltr command and it will still be
usable.

Please note that when creating a Hard Link the inode attached to the file is just copied to the directory where the link
is created so bothe the link and the actual file will have the same inode number.
In other words, there is no pointing to other file.
When removing the source file, the link with the same inode number will still be reachable, in other words, it does not
remove the destination.
If you get this error: ln: failed to create hard link './hulk' => '/home/mmarin/hulk': Invalid cross-
device link

It is most likely that your '/home' directory isn't on the same partition as the '/tmp' directory
Hard Links only work within the same partition

[user@localhost ~]$ echo "123" >> hulk

If you want to add new content in a new line without overwriting the file you can use the >> operand instead of just > .
> Overwrites or erases the content and adds the new one to the file.
>> Adds a new line and adds the content there without erasing the already existing content in the file.
As we have a link in the '/tmp' directory and we are modifying this file in its original location, changes will also show up
when using the link in the '/tmp' location.

hulk is a superhero
123

Output (stdout) - 1

Example using ls -la command:

Input (stdin) - 0

1. Standard input (stdin) and it has file descriptor number as 0
2. Standard output (stdout) and it has file descriptor number as 1
3. Standard error (sterr) and it has file descriptor number as 2

Please consider that everything in Linux is considered as a File
This means that any peripherals like mouse, keyboard or monitor are also seen by the OS as a file.

When we actually write something in the keyboard that is coming in as a standard input and it is actually knocking on the
door for file zero, file descriptor 0.
When we are showing that output on the screen that output is actually going thourgh the output descriptor number 1.
if there's any error it will show up as the file descriptor 2.

By default when running a command its output goes to the terminal
The output of a command can be routed to a file using > symbol

If you are typing a command you could route the output that you see from the command to another file.
E.g. ls -l > listings

In this example the outputs of the ls -l command are being routed or in other words being saved into the file
with the name 'listings'

E.g. pwd > findpath

If using the same file for additional output or to append to the same file then use >>
E.g. ls -la >> listings
E.g. echo "Hello World" >> findpath.

[user@localhost ~]$ ls -la >> listings

The a specifier of the ls command allows to show all the hidden files of a directory
In this line we are routing the output from the ls -la command and appending it to the file named 'listings' using the >>
redirect
You can use cat to see the contents of this file

Input is used when feeding file contents to a file
E.g. cat < listings
E.g. mail -s "Office memo" allusers@abc.com < memoletter

Example using cat command:

Output: (contents found inside the 'findpath' file)

Error (stderr) - 2

Example using telnet command:

Output:

This line sends a mail with the subject line "Office memo" and it is being sent to all the users of the company
abc.com.
Now what is going to be the content of that letter?

The content of that letter is actually written inside the 'memoletter' file

[user@localhost ~]$ cat < findpath

In common language we could read this line as "cat input findpath"
As cat itself is a command to show the contents of a file it is the same to do cat findpath
In this case we are explicitly telling the cat command to use the feedings from the 'findpath' file

/home/mmarin
Hellow World

When a command is executed we use the keyboard and that is also considered (stdin - 0)
That command output goes on the monitor and that output is (stdout - 1)
If the command produces an error on the screen then it is considered (stderr - 2)

We can use redirects to route errors from the screen to a different file
E.g. ls -l /root 2> errorfile

In this case we know that '/root' is owned by root, not by a regular use, it will produce an error.
We could route that to a file, but we have to specify how we are routing
We only want to route the standard error, not the entire output. and that is why we have to use the 2>
redirect sign.

E.g. telnet localhost 2> errorfile
This is another example of one use of the 2> redirect
We could use a program like Telnet, Localhost and its error message if it's not gonna be able to connect to
that host, we do not want to see that on the screen error, we just want to go into the 'errorfile'

[user@localhost ~]$ telnet localhost

Telnet is a small program which actually allows you to connect from one machine to another just like SSH.
'localhost' is your own host

Trying ::1...
telnet: connect to address ::1: Connection refused
Trying 127.0.0.1...
telnet: connect to address 127.0.0.1: Connection refused

Input and Output redirects are very useful when you have to create shell scripts and automating tasks

Pipes (|)

Case example: If you want to view the contents of the ls -ltr command of the '\etc' directory (this directory contains a lot of
files) one page at a time you can do the following:

Example using more command:

Output:

We know this like will throw an standard error that we can route into a file using the following line: telnet localhost 2>
errorfile

In that case we are routing the error thrown by the telnet command which is actually only the last 2 lines that say
"Connection refused" to the file named 'errorfile'
Note we can also use 2>> to append a routed standard error to a file without overwriting the whole file

A pipe is used by the shell to connect the output of one command directly to the input of another command.
The symbol for a pipe is the vertical bar (|). The command syntax is:

command1 [arguments] | command2 [arguments]

In you want to take the output of the first command and pipe it to a different output then you could use a pipe.

A command goes into a pipe and the output of that command will then be refined by the last command.

[user@localhost etc]$ ls -ltr | more

The more command gives you the output of a file one page at a time.
An ls -ltr command is being piped with a more command to show the outputs of the ls -ltr one page at a time

...
drwxr-xr-x. 2 root root 6 Mar 23 2022 cron.weekly
-rw-r--r--. 1 root root 451 Mar 23 2022 crontab
drwxr-xr-x. 2 root root 6 Mar 23 2022 cron.monthly
--More--

Note that at the bottom it tells you that there is more.

Example using ll command:

Output:

Case example 2: What if you wanted to get the last line of your output? Well you can do the following:

Example using tail command:

Output:

You can hit space bar to go down to the next page will show up until the file ends.

[user@localhost ~]$ ll

ll Is an easier way of typing ls -l (It is the same)

...
drwxr-xr-x. 2 root root 6 Mar 23 2022 cron.weekly
-rw-r--r--. 1 root root 451 Mar 23 2022 crontab
drwxr-xr-x. 2 root root 6 Mar 23 2022 cron.monthly

[user@localhost ~]$ ll | tail -1

tail gives you the last lines of your output
The -1 specifier tells the tail command to output exactly only the last line of the output. Without this specifier it will
throw multiple lines that are considered as the "tail" of the output.
In this case the ll command is being piped with the tail -1 command to show only the last line of the output

drwxr-xr-x. 2 root root 25 Jun 3 13:24 yum.repos.d

