Monitor and manage Linux processes

Linux #redhat #processes #daemons

Applications, Processes, Jobs etc.

Application = Service - is like a program that runs in your computer
In Windows you have Office Word, Powerpoint, Firefox, etc.
In Linux you have programs or applications like NTP, NFS, rsyslog, Apache, etc.
Script - Shell scripts or Commands are list of instructions. Something that is written in a file and then packaged it in a way
that it will execute.
adduser, cd, pwd, etc
Any application that is running in your computer, for example, Apache, you would have to run that as a script and that
will run in the background. All other commands in Linux are actually scripts.
Process - When you run an application it actually generates processes with its process ID. Now processes could be one
associated to that application or it could be multiple processes
Service --> Process1
Process2
Process3

Daemon - Something that continuously runs in the background and runs until interrupted
When you run a daemon, which is also a process, but it keeps on running in the background and it keeps listening to
the incoming or outgoing traffic.
Threads - Every process could have multiple threads associated with it. An application that is running in your background,
let's say NFS, when you run that application in your Linux machine it could have many multiple threads. If a remote
machine tried to connect to you through NFS, it will generate one thread for it and it will generate a second thread or third
thread for other computers that are attaching to it.
Service --> Process --> thread1
thread2
thread3
thread4

Job - Job or Workorder = Run a service or process at a schedule time

Monitor and manage system resources

When an operating system boots up many programs get loaded into system memory. These processes or programs need
to be managed and monitored because they consume mainly 3 system resources like CPU, memory and disk space. If
they are mismanaged then system can stress out and shut down on you an application, and your production applications
can actually break.

Here are a few monitoring commands to manage system resources
df - Gives you the statistics on your file system.
du - Stands for "disk usage" and gives you how much usage of the disk is being utilized by each file
uptime - Tells you the system how long its been up for.
top
free
Lsof - Stands for "list open file system"
tcpdump

netstat

ps
kill

Some other commands are vmstat, iostat, iftop, etc.

The df command

How do we check how much disk space that is utilized in the file system?

Example using df command:

[user@localhost ~]$ df

Output:
Filesystem 1K-blocks
devtmpfs 4096
tmpfs 5294164
tmpfs 2117668
/dev/mapper/rhel-root 17756160 7

/dev/sdal
tmpfs

Example using df command:

[user@localhost ~]1$ df

983040
1058832

-h

Used Available Use% Mounted on
0 4096 0% /dev
@ 5294164 0% /dev/shm
9376 2108292 1% /run
871500 9884660 45% /
310840 672200 32% /boot
100 1058732 1% /run/user/1000

The -h option stands for "human readable" and specifies to change the units to be more readable to humans.

Output:

Filesystem

devtmpfs

tmpfs

tmpfs
/dev/mapper/rhel-root
/dev/sdal

tmpfs

Size
4.0M
5.1G
2.1G

17G
960M
1.1G

Used

9.2M
7.6G
304M
100K

Avail Use% Mounted on
4.0M 0% /dev

5.1G 0% /dev/shm

2.1G 1% /run

9.5G 45% /

657M 32% /boot

1.1G 1% /run/user/1000

For example for the size, instead of Kilobytes we can see Megabytes and Gigabytes and we know how much that actually

IS.

The 'devtmpfs' and 'tmpfs' are file system for your swap space.
Our swap space has been carved out for AROUND 7 Gigabytes.

The '/dev/imapper/rhel-root' is actually the filesystem for all the data in the machine.

The '/dev/sda1’ is the filesystem that is given to our boot.

Whenever you boot up your Linux system there are certain files that are located on /boot, so the operating system will

go into /boot and find those files, and finally boot up your system.

If you see that the usage of any filesystem is around 98% or 100% it means your filesystem is getting full and you need to
find out why it is getting full. (See next command)\

Example using df command:

[user@localhost ~]$ df -T

« The -T option is set to specify which type of file system is each of the file systems listed. E.g. ext4, exfs, etc.

Output:
Filesystem Type 1K-blocks Used Available Use% Mounted on
devtmpfs devtmpfs 4096 0 4096 0% /dev
tmpfs tmpfs 5294168 ® 5294168 0% /dev/shm
tmpfs tmpfs 2117668 9376 2108292 1% /run
/dev/mapper/rhel-root xfs 17756160 7871972 9884188 45% /
/dev/sdal xfs 983040 310840 672200 32% /boot
tmpfs tmpfs 1058832 96 1058736 1% /run/user/1000

The du command
» Use when you want to know which individual file is actually causing or is the culprit that you could delete to re-claim your
space.

» du stands for "disk usage"

Example using du command:

[root@localhost ~]# du /

» Targeting each file in OS
» For this operation the user has to become root because there are certain files that only has permissions to root user.

Output:
0 /usr/share/locale/sat@deva
0 /usr/share/locale/sat
(/] /usr/share/locale/sas/LC_MESSAGES
0 /usr/share/locale/sas
0 /usr/share/locale/sam/LC_MESSAGES

» You'll see each and individual file that is in my operating system with its size and it goes so fast so it is very hard to read.

Example using du command:

[root@localhost ~]# du -k

» The -k option stands for "kilobyte" spefies to show content size in Kilabytes

Output:

36
68
3284
9864

/var/lib/flatpak/repo/refs/remotes
/var/lib/flatpak/repo/refs
/var/lib/flatpak/repo/objects/eb
/var/lib/flatpak/repo/objects/9d

Still the output is too fast and very long

Example using du command:

[root@localhost ~]# du -k / | sort —nr | more

The du command is being used to check for name and size of the entirety of the / directory.

The -k option specifies that size will be shown in Kilobytes

This command is being piped with the sort command which sorts the content of a file.

The -n stands for "numeric" option specifies that a numeric sort is going to take place (Compare according to string
numerical value). In this case it will arrange the files in order of decreasing size (from higher to lowest size).
The —r option stands for "reverse" specifies that the sorted content will be in reverse order.

This command is being piped again with a more command to show the content of a file one page at a time.

Output:

66908
65112
64704
64704

/var/tmp/flatpak—-cache-F5IHP2
/usr/lib/modules/5.14.0-427.18.1.e19_4.x86_64/kernel
/home/mmarin/.var/app/md.obsidian.0Obsidian
/home/mmarin/.var/app

==efe=—=

Example using du command:

[user@localhost ~]$ du -h / | sort -nr more

The du command is also applicable with the —-h option which makes units more readable fur humans.

Output:

1020K
1012K
1012K
1004K

/var/lib/flatpak/repo/objects/06
/usr/share/microcode_ctl/ucode_with_caveats/intel-06-8e—-9e-0x-0xca
/usr/lib/modules/5.14.0-427.18.1.e19_4.x86_64/kernel/drivers/net/wireless/realtek/rtlwifi
/usr/lib/firmware/rtw89

Note the size unit is displayed.

After identifying which file is taking up a lot space you can go ahead and delete the file to re-claim that space but first make sure
you check with the file owner or make a backup copy on another server, in this way you do not delete any important file

accidentaly.

The uptime command

Example using uptime command:
[user@localhost ~]$ uptime

Output:

20:23:50 up 31 min, 3 users, load average: 0.00, 0.00, 0.08

» After running the uptime command, the following fields are displayed:
» The right existing time (20:23:50 up 31 min)
» Number of users that's been logged in since the system has been up or logged in right now (3 users)
» The system load average in percentage in the following time intervals respectively:
» the last minute (0.00), 5 minutes (0.00), 15 minutes(0.08)

» Is important to check the uptime if the system is running is slower or the response time is slower.

The top command

» Every system administrator favorite command
« All the processes that you are running on your Linux system will be displayed by running the command top

Example using top command:
[user@localhost ~]$ top
Output:

top - 20:45:32 up 53 min, 3 users, load average: 0.00, 0.00, 0.00

Tasks: 242 total, 1 running, 241 sleeping, 0 stopped, 0 zombie

%Cpu(s): 0.0 us, 0.0 sy, 0.0 ni, 99.9 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 10340.2 total, 8254.4 free, 1378.2 used, 1036.2 buff/cache
MiB Swap: 2048.0 total, 2048.0 free, 0.0 used. 8962.0 avail Mem

PID USER PR NI VIRT RES SHR S %CPU SMEM TIME+ COMMAND
3151 root 20 0 226056 4352 3456 R 0.7 0.0 0:00.10 top
1 root 20 ® 173540 18068 10516 S 0.0 0.2 0:10.35 systemd
2 root 20 0 0 (/] 0 S 0.0 0.0 0:00.21 kthreadd
3 root 0 -20 (/] 0 01 0.0 0.0 0:00.00 rcu_gp

» The first line says the command, the time right now, the system has been up and running, users, and load average (The
same as from the uptime command)
e top - 20:45:32 up 53 min, 3 users, load average: 0.00, 0.00, 0.00
» The second line tells you the tasks, total tasks that we are running in our system or processes. E.g.
o Tasks: 242 total, 1 running, 241 sleeping, @ stopped, @ zombie
o 242 total tasks
« 1 task running
» 241 tasks are sleeping
« Ostop
+ 0zombie

The third line tells you the CPU usage and system stats.
%Cpu(s): 0.0 us, 0.0 sy, 0.0 ni, 99.9 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
If CPU is at around 90-95% then definitely means something is wrong with your system, and there might be a
process here that is causing your CPU load to go up.
Then we have memory stats
MiB Mem : 10340.2 total, 8254.4 free, 1378.2 used, 1036.2 buff/cache
Then we have swap space stats
MiB Swap: 2048.0 total, 2048.0 free, 0.0 used. 8962.0 avail Mem
Next is the columns which are described in the following list:
PID: Process ID.
USER: The owner of the process.\
PR: Process priority.
NI: The nice value of the process.
VIRT: Amount of virtual memory used by the process.
RES: Amount of resident memory used by the process.
SHR: Amount of shared memory used by the process.
S: Status of the process.
S = sleeping
R = running
D = Uninterruptible sleep
| =Idle
T = Stopped
t = Being stopped
Z = Dead process (Zombie)
%CPU: The share of CPU time used by the process since the last update.
%MEM: The share of physical memory used.
TIME+: Total CPU time used by the task in hundredths of a second.
COMMAND: The command name or command line (name + options).
The PID is useful to identify the process and then kill it if necessary.

You can hit "q" on your keyboard to get out of the top command

The free command
free will give you the information about your memory

Example using free command:

[user@localhost ~]$ free

Displays information about the memory

Output:
total used free shared buff/cache available
Mem: 10588336 1415492 8399276 22548 1110100 9172844
Swap: 2097148 0 2097148

Note there are no units

Example using free command:

[user@localhost ~]$ free —m

The -m option is used to display the memory information in Megabyte units

Output:
total used free shared buff/cache available
Mem: 10340 1382 8202 22 1084 8957
Swap: 2047 0 2047

This is the physical memory we have or in case of a Virtual Machine the memory we assigned when we built our machine.
Swap space is actually a space that is on the disk. It is not a dedicated memory like a physical memory, it is actually a
space carved out on a disk.

The 1sof command

Stands for "list open file"

When you are running a process a process most likely will go into certain files and certain configuration file to look what it
needs to do. It needs some instructions.

Sometimes when you stop a process, the files that it was looking into remain open, which can also cause a system to
break or slow down.

You could find the list of open files by running the command Lsof .

Example using lsof command:

[user@localhost ~]$ lsof

Output:

NetworkMa 937 root 22u a_inode 0,14 (4] 1057
[timerfd]

NetworkMa 937 root 24u a_inode 0,14 (4] 1057
[eventpoll:25,26]

NetworkMa 937 root 25u a_inode 0,14 0 1057
[timerfd]

NetworkMa 937 root 26u pack 16099 0to ARP

type=SOCK_DGRAM

When running the 1sof command you are gonna find a bunch of files because we have so many processes running.
Each process could have multiple files open.
If it's actually asking hardware to print something, asking mouse to move or asking keyboard to type, it's actually
going through each file and touching that file.

The tcpdump command

» This command is specifically for networking.

« Which activity is coming into the system?

» Which traffic is going out of the system?

« This is the command that will tell you everything.

Example using tcpdump command:

[user@localhost ~]$ tcpdump

Output:

dropped privs to tcpdump

tcpdump: verbose output suppressed, use -v[v]... for full protocol decode

listening on enp@s3, link-type EN1@OMB (Ethernet), snapshot length 262144 bytes

22:18:18.485778 IP localhost.localdomain.ssh > 192.168.1.58.51835: Flags [P.], seq
522908912:522909152, ack 3022170718, win 1872, length 240

22:18:18.532905 IP 192.168.1.58.51835 > localhost.localdomain.ssh: Flags [.], ack 240, win 8194,
length 0

22:18:18.577893 IP localhost.localdomain.34562 > _gateway.domain: 59098+ PTR? 58.1.168.192.in-—
addr.arpa. (43)

22:18:20.193096 IP 192.168.1.58.57621 > 192.168.1.255.57621: UDP, length 44

» There is a bunch of information coming in and out of your system.
« Each line tiles you:
o The time
o The IP address
o Where is it coming from
» What is the gateway
» What is the broadcast information
» etc.

How to find what is the name of your interface?
» Simply run the ifconfig command and the name of your network adapter will be the name of your interface.

Example using ifconfig command:

[user@localhost ~]$ ifconfig

Output:

enp0@s3: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.1.156 netmask 255.255.255.0 broadcast 192.168.1.255
inet6 fe80::a00:27ff:feda:ce70 prefixlen 64 scopeid 0x20<link>

» In this example, the name of the network adapter is "enp0s3". This is also the name of the interface.

Example using tcpdump command:

[user@localhost ~]$ tcpdump -i enp@s3

This line uses the tcpdump command to see all the traffic that are flowing over this network interface. | don't want to know
any of the traffic happening internally which is local or on the virtual adapter.

The -i option stands for "interface" and it lets you see the traffic from a specific network adapter.

There is still so much information going in and out.

If you are troubleshooting a network connection, this is the best command that you could get.

The netstat command

This command is related to your network statistics or anything coming in and out.
What are the connections that's been established?

Who's your router?

Who's your gateway?

etc.

Example using netstat command:

[user@localhost ~]$ netstat -rnv

The netstat command shows useful network statistics and identifications.
The -r option specifies to display the kernel routing tables
The —-n option specifies to show numerical addresses instead of trying to determine symbolic host, port, or user names.

The -v option specifies to tell the user what is going on by being verbose. Especially print some useful information about
unconfigured address families.

Output:

Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt Iface
0.0.0.0 192.168.1.1 0.0.0.0 UG 00 0 enp@s3
192.168.1.0 0.0.0.0 255.255.255.0 U 00 0 enp@s3

In this example all the traffic that is going through our Linux machine is going through the gateway 192.168.1.1.

Example using netstat command:

[user@localhost ~]$ netstat -a

The -a option specifies to give you all the connection information that is connected to outside.

Output:

Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 240 localhost.localdoma:ssh 192.168.1.58:51835 ESTABLISHED
udp 0 0@ localhost.locald:bootpc _gateway:bootps ESTABLISHED

Active UNIX domain sockets (w/o servers)

Proto RefCnt Flags Type State I-Node Path

unix 2 [1 DGRAM 26796 /run/user/1000/systemd/notify
unix 3 [1 DGRAM CONNECTED 58 /run/systemd/notify
unix 17 [1 DGRAM CONNECTED 71 /run/systemd/journal/dev-1log

Example using netstat command:

[user@localhost ~]$ netstat -au

» The -u option specifies to give you all the UDP traffic

Example using netstat command:

[user@localhost ~]$ netstat -at

« The -t option specifies to give you all the TPD traffic

Output (TCP):

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:ssh 0.0.0.0:% LISTEN
tcp 0 0 localhost:ipp 0.0.0.0:% LISTEN
tcp 0 64 localhost.localdoma:ssh 192.168.1.58:51835 ESTABLISHED
tcpb 0 @ [::]:ssh [=:]:% LISTEN
tcpb 0 0 localhost:ipp [=:]:% LISTEN

» Wil give you all the TCP ftraffic that it's listening to.

The ps command

» Stands for "process status"
» It will give you the list of all the processes that are running in the system.
« You could also use the top command for this but it will only give you the highest running processes on top, but
there's so many other processes as well.

» What if you wanted to delete a process with ID 317 It won't show up on top

Example using ps command:

[user@localhost ~]$ ps —ef

» This line uses the ps command to see every process on the system using standard syntax
» ps reports a snapshot of the current processes.

» The -e option specifies to select all processes (Same as -A)
» The -f option specifies to do a full-format listing.

Output:

uib PID PPID C STIME TTY TIME CMD

root 1 0 0 19:52 7 00:00:10 /usr/lib/systemd/systemd rhgb —--switched-root ——
system ——deserial

root 2 0 0 19:52 7 00:00:00 [kthreadd]

root 3 2 0 19:52 7 00:00:00 [rcu_gp]

root 4 2 0 19:52 ? 00:00:00 [rcu_par_gp]

Displays all the processes that we have running
What if you wanted to find out information about a specific process?
You can also run ps -ef | more to look for that process one page at a time or...
You canrun ps —ef | grep process_name and replace "process_name" with the actual name of the process to look for
it.

Example using ps -ef command:

[user@localhost ~]$ ps —-ef | grep top

The ps -ef command is being piped with the grep command to look exactly for the process called "top" in the outputs of
the ps —ef command.

Output:
root 3655 3465 0 23:11 pts/1 00:00:00 grep ——color=auto top

There isn't anything listed because the process is not running.
It is just listing the actual grep command looking for the word "top".
As soon as it execute it becomes its own process. (It actually greps its own running process)

Output:
mmarin 3714 3667 0 23:12 pts/2 00:00:00 top
root 3716 3465 0 23:12 pts/1 00:00:00 grep ——color=auto top

This is how it would look like if a user is currently running the process called top

The kill command

What if a process is not stopping even after closing the window? Kill it :D
You can use the kill command to kill a process right away

Example using kill command:

[user@localhost ~]$ kill 3714

First identify the process ID by using either top or ps -ef

In this example the process ID is the number "3714"
The kill command will then eliminate the process with process ID "3714"

Another powerful option with kill:

If you are attempting to kill a process and the process is not getting killed, then...

Example using kill command:
[user@localhost ~]1$ kill -9 3714
In this line the kill command will just go and simply kill it harshly without looking here and there the "3714" process. (It
will not go through the graceful killing process.)

It will actually kill all the associated process with that.
The -9 signal is used to preference to the KILL signal.

Other commands

Example using vmstat command:
[user@localhost ~]$ vmstat

The vmstat command reports virtual memory statistics

Output:
PDFOES =—————m———| MEMY Y= === swap--— ————-— === =GYSIEl= === cpu————-
r b swpd free buff cache si so bi bo in cs us sy id wa st
1 0 0 8363240 2780 1137344 0 0 8 0 14 13 0 0 100 © 0

iostat and iftop commands are not included by default in RHEL 9.

