Run Containers

Linux #redhat #containers

What is a Container?

» The term Container and the concept came from the shipping container

@
o
57545
s PO P

» Holds all the different type of cargo shipment and it actually can transport it to everywhere in the world.
» These containers are shipped from city to city and country to country
» No matter which part of the world you go to, you will find these containers with the exact same measurements... YOU
KNOW WHY???
» Because around the world all docks, trucks, ships and warehouses are built to easily transport and store them
» This is what makes transportation a lot easy
» e.g. You take a container and you put it on a truck, then that truck goes to the docking station to put that onto the
ship. Then what happens is this ship has to be transported from one end of the world to another end, and then
on the other side of the world, it actually picks and lifts that container and actually puts it on the truck which can
hold the similar same measurement size of that container and it ships over.

» Now when we are talking about containers in IT we are fulfilling somewhat similar purpose

Old days:

In old days. .. Application
Production Server

\'—\pp]ication . . o
Developer !

» In old days there was a developer, she would write a code in her laptop

» While she's writing a code, the purpose of writing the code is so she could create an application, so once the code is
written,

» The application is billed

» She tested it on her laptop

» Then she copies that same code to a production server

» In the production server we will open up that package or install the package, then we will try to run it and somehow it won't
run.

» Then what will happen is the developer will come back and says "Hey, it runs on my computer perfectly, but it doesn't run
on the production.”

« This is the main reason these Containers were born.

Nowadays:

« Then came the container technology which allowed developers or programmer to test and build applications on any
computer just by putting it in a container (bundled in with the software code, libraries and configuration files) and then run
on another computer regardless of its architecture

» You can move that application anywhere without moving its OS just like moving the actual physical container anywhere
that would fit on any dockyard, truck, ship or warehouse
» An OS can run single or multiple containers at the same time
» Please Note: Container technology is mostly used by developers or programmers who write codes to build applications
« As a system administrator your job is to install, configure and manage them.

What are the Container Software?

« Docker

.docker

« They got the name 'docker' from the same "dock yard"

» Developed by: Solomon Hykes
» Released on: March 20th 2013
» Docker is a software used to create and manage containers

« Just like any other package, docker can be installed on your Linux system and its service or daemon can be
controlled through native Linux service management tool

» Docker is not only specific to Linux, there are other versions of Docker that can be installed on Windows too in order
to provide the same container technology

» Podman

« This is the focal point on this note

+ Podman was developed by RedHat
» Released on: August 2018
« Podman is an alternative to docker
» Now, why they made it and why they didn't like the Docker? We do not know the answer.
« Docker is not supported in RHEL 8
« For those using RedHat Linux you should know that Docker is not supported in RedHat Enterprise Linux 8. So
you would have to go with Podman.
» itis daemon less, open source, Linux-native tool designed to develop, manage, and run containers.
» There are many other containers applications, engines and softwares out there.

Getting Familiar with RedHat Container Technology

» Red Hat provides a set of command-line tools that can operate without a container engine, these include:

podman - for directly managing pods and container images (run, stop, start, ps, attach, etc.) (ps is checking the
status)

buildah - for building, pushing, and signing container images

skopeo - for copying, inspecting, deleting, and signing images\

runc - for providing container run and build features to podman and buildah

crun - an optional runtime that can be configured and gives greater flexibility, control, and security for rootless
containers (Containers where you do not have to be root in order to create or run these containers).

Getting Familiar with podman Container Technology

When you hear about containers then you should know the following terms as well
images - containers can be created through images and containers can be converted to images
For those who understand the term 'template' in a virtualization environment, you could create a virtual machine
from a template OR you could actually convert a virtual machine to a template. Images work the same as those
templates.
pods - Group of containers deployed together on the host (running at the same time). In the podman logo there are 3
seals grouped together as a pod.

Building, Running and Managing Containers

Again, podman is a command line tool that allows you to create or manage your containers

To install podman

yum/dnf install podman -y
yum/dnf install docker -y (For dockers)
Remember the -y option is to answer "yes" to every question asked during installation

We will be using RHEL 9 and CentOS 7 in this note just to exemplify better

To create alias to docker
alias docker=podman

This command is only for those who have a Docker running on the Linux machine and now they wanted to use
podman, which will still run all the commands at Docker, but it will run through podman

Check podman version
podman -v

Example using podman command:

[root@localhost ~]# podman -v
podman version 4.9.4-rhel

Getting help
e podman ——help or man podamn

Example using podamn command:
[root@localhost ~]# podman —-help
Output:
Manage pods, containers and images

Usage:
podman [options] [command]

Available Commands:

attach Attach to a running container

auto-update Auto update containers according to their auto-update policy
build Build an image using instructions from Containerfiles
commit Create new image based on the changed container

compose Run compose workloads via an external provider such as docker—compose or podman—compose
container Manage containers

cp Copy files/folders between a container and the local filesystem
create Create but do not start a container

diff Display the changes to the object's file system

events Show podman system events

exec Run a process in a running container

export Export container's filesystem contents as a tar archive
farm Farm out builds to remote machines

generate Generate structured data based on containers, pods or volumes
healthcheck Manage health checks on containers

help Help about any command

history Show history of a specified image

image Manage images

images List images in local storage

import Import a tarball to create a filesystem image

info Display podman system information

init Initialize one or more containers

inspect Display the configuration of object denoted by ID

kill Kill one or more running containers with a specific signal
kube Play containers, pods or volumes from a structured file
load Load image(s) from a tar archive

login Log in to a container registry

logout Log out of a container registry

logs Fetch the logs of one or more containers

machine Manage a virtual machine

manifest Manipulate manifest lists and image indexes

mount Mount a working container's root filesystem

network Manage networks

pause Pause all the processes in one or more containers

pod Manage pods

port List port mappings or a specific mapping for the container
ps List containers

pull Pull an image from a registry

push Push an image to a specified destination

rename Rename an existing container

restart Restart one or more containers

rm Remove one or more containers

rmi Remove one or more images from local storage

run Run a command in a new container

save Save image(s) to an archive
search Search registry for image
secret Manage secrets
start Start one or more containers
stats Display a live stream of container resource usage statistics
stop Stop one or more containers
system Manage podman
tag Add an additional name to a local image
top Display the running processes of a container
unmount Unmount working container's root filesystem
unpause Unpause the processes in one or more containers
unshare Run a command in a modified user namespace
untag Remove a name from a local image
update Update an existing container
version Display the Podman version information
volume Manage volumes
wait Block on one or more containers
Options:
——cgroup—-manager string Cgroup manager to use ('cgroupfs"|"systemd") (default "systemd")
——conmon string Path of the conmon binary
-c, ——connection string Connection to use for remote Podman service
——events—backend string Events backend to use ("file"|"journald"|"none") (default
"journald")
—help Help for podman
——hooks—dir strings Set the OCI hooks directory path (may be set multiple times)
(default [/usr/share/containers/oci/hooks.d])
——identity string path to SSH identity file, (CONTAINER_SSHKEY)
——imagestore string Path to the 'image store', different from 'graph root', use this

to split storing the image into a separate 'image store', see 'man containers-storage.conf' for
details

——Llog-level string Log messages above specified level (trace, debug, info, warn,
warning, error, fatal, panic) (default "warn")

——module strings Load the containers.conf(5) module

——network-cmd-path string Path to the command for configuring the network

——network-config-dir string Path of the configuration directory for networks

——out string Send output (stdout) from podman to a file

-r, ——remote Access remote Podman service

——root string Path to the graph root directory where images, containers, etc.
are stored

——runroot string Path to the 'run directory' where all state information is stored

——runtime string Path to the OCI-compatible binary used to run containers. (default
"crun")

——runtime-flag stringArray add global flags for the container runtime

——ssh string define the ssh mode (default 'golang")

——storage-driver string Select which storage driver is used to manage storage of images
and containers

——storage-opt stringArray Used to pass an option to the storage driver

——syslog Output logging information to syslog as well as the console
(default false)

——tmpdir string Path to the tmp directory for libpod state content.

Note: use the environment variable 'TMPDIR' to change the

temporary storage location for container images, '/var/tmp'.
(default "/run/libpod")

——transient-store Enable transient container storage
—url string URL to access Podman service (CONTAINER_HOST) (default
"unix:///run/podman/podman.sock")
-v, —-version version for podman

——volumepath string Path to the volume directory in which volume data is stored

» You'll see all these optional commands that are available with podman

Check podman environment and registry/repository information

» podamn info (if you are trying to load a container image, then it will look at the local machine and then go trough each

registry by order listed)

Example using podman command:

[root@localhost ~]# podman info

Output:

registries:
search:
- registry.access.redhat.com
- registry.redhat.io
— docker.io

» It will output a bunch of stuff in between you can find the registries section

» If you wanted to search for a specific image, it will go to its local machine to see if it has any images that you're looking for.
If it can't find it, then it will go to registry.access.redhat.com, if not found then it will jump to registry.redhat.io and
finally if not found it will go to docker. io, wherever it could find the image that you are looking for.

To search a specific image in repository
e podman search httpd

» Before you run a container you don't have to fo in and build a container. There are pre-built containers out there and those
are packed together in something called an image. So we have to look for the container image. In this example we will

look for the httpd image.

Example using podman command:

[root@localhost ~]# podman search httpd

Output:

DESCRIPTION
Apache HTTP 2.4 Server
Platform for running

NAME
registry.access.redhat.com/rhscl/httpd-24-rhel7
registry.access.redhat.com/ubi8/httpd-24

Apache httpd 2.4 or bui...
registry.access.redhat.com/ubi9/httpd-24
rhcc_registry.access.redhat.com_ubi9/httpd-2...
registry.access.redhat.com/cloudforms46-beta/cfme—-openshift-httpd CloudForms is a
management and automation pl...

docker.io/library/httpd The Apache HTTP Server

Project

You will be able to see NAME and DESCRIPTION of images.

» In previous podman versions you were able to see INDEX, NAME, STARS, OFFICIAL, AUTOMATED, and DESCRIPTION
» Now we have to use the option —-compatible to get all this info.

s e.g. podman search ——compatible httpd (to see star count)

You usually scroll down and look for the image that has the highest stars which should be the most used one.
» In this case we will choose docker.io/library/httpd location to download the image.

To list any previously downloaded podman images
e podman images

Example using podman command:

[root@localhost ~]# podman images
REPOSITORY TAG IMAGE ID CREATED SIZE

» It will tell you the title of the image, the tag, the image ID
» If there isn't any information underneath it means there aren't any images available.

To download available images

e podman pull docker.io/library/httpd

o podman images (Check downloaded image status)

Example using podman command:

[root@localhost ~]# podman pull docker.io/library/httpd
Trying to pull docker.io/library/httpd: latest...
Getting image source signatures
Copying blob 65dfcadc56f2 done
Copying blob fllcladaa26e done
Copying blob 4f4fb700ef54 done
Copying blob 3bce494dbe9a done
Copying blob @ec6a44b37fe done
Copying blob e4822864e326 done
Copying config c@c20df5e7 done |

Writing manifest to image destination
c0c20df5e7be79dc8de00a6575529252b684a79b849e8e090517ef451e036966

» Remember we got this location from running the podman search httpd command.
» Once the image has been downloaded, how do we confirm that it has been downloaded?
o Simply run podman images and look for it.

Verifying we downloaded the image
Example using podman command:

[root@localhost ~]# podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
docker.io/library/httpd latest c0c20df5e7be 7 days ago 152 MB

» The CREATED field means someone has modified the image 7 days ago.

To list podman running containers

e podman ps

» To list existing running containers

Example using podman command:

[root@localhost ~]# podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

» Again just like podman images, we have the title line up there but we do not have any other information about any
container, there is no an actual container.

+ Now we have to run the container

To run a downloaded httpd containers

e podman run -dt —p 8080:80/tcp docker.io/library/httpd (d=detach, t=get tty shell, p=port)
» podman ps or Check http through web browser

Example using podman command:

[root@localhost ~]# “podman run -dt —p 8080:80/tcp docker.io/library/httpd’

» The -d option stands for "detach" and means we want our terminal back
» The -t option stands for "terminal" and specifies to get tty shell (our prompt shell)
» The —p option stands for "port" and it is used to specify a port for this http container

Output:

fdfc0b2a306e6a146734373bdb272104b3af5e4cae922f4bdf70eb94338c28a8

Now check if we have our container running
Example using podman command:

[root@localhost ~]# podman ps

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

fdfcOb2a306e docker.io/library/httpd:latest httpd-foreground About a minute ago Up About a minute
0.0.0.0:8080—>80/tcp laughing_feynman

» We even get the name of whoever actually named this image to whatever they wanted to give.
« you could give it any name as well if you want.

» When you create a container a container out of an image you could give it any name you like
» We have confirmed that the container is running

You can check the container is running to by checking http through a web browser

192.168.1.200:3080 x +

G A Notsecure 192.168.1.200

It works!

» Remember you will have to know the IP of your machine to access the http server

» If you are accessing your own http server in the same machine you can always use "localhost" instead of typing the whole
IP address.

» We will get an "It works!" http page

To view podman logs

e podman logs -1

» If podman is not running the container successfully, you could definetely check the logs.

Example using podman command:

[root@localhost ~]# podman logs -1

Output:

AH@@558: httpd: Could not reliably determine the server's fully qualified domain name, using
10.88.0.2. Set the 'ServerName' directive globally to suppress this message

AH@@558: httpd: Could not reliably determine the server's fully qualified domain name, using
10.88.0.2. Set the 'ServerName' directive globally to suppress this message

[Wed Jul 10 19:23:29.650339 2024] [mpm_event:notice] [pid 1:tid 1] AH00489: Apache/2.4.61 (Unix)
configured —— resuming normal operations

[Wed Jul 10 19:23:29.650656 2024] [core:notice] [pid 1:tid 1] AH@Q0094: Command line: 'httpd -D
FOREGROUND '

192.168.1.58 - — [10/Jul/2024:19:30:09 +0000] "GET / HTTP/1.1" 200 45

192.168.1.58 - - [10/Jul/2024:19:30:09 +0000] "GET /favicon.ico HTTP/1.1" 404 196
192.168.1.58 - - [10/Jul/2024:19:31:01 +0000] "-" 408 -

« It will tell you all the information that you need as to when it started, how is it working and all the information that you need
to troubleshoot further.

To stop a running container

e podman stop con-name/con-ID (con-name from podman ps command)

« How do we know what is the container name or ID?
» You can always run podman ps which will give you the status of your container.

Example using podman command:

[root@localhost ~]# podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS

NAMES
fdfcOb2a306e docker.io/library/httpd:latest httpd-foreground 14 minutes ago Up 14 minutes

0.0.0.0:8080—>80/tcp laughing_feynman

» Note the name of this container is: fdfc@b2a306e
» We will use this to stop running this container

Example using podman command:

[root@linuxtest ~]# podman stop fdfcOb2a306e

fdfcOb2a306e
[root@linuxtest ~]# podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

» Note that after running podman stop fdfc@b2a306e and checking if the conteiner is running by doing podman ps the
container is not shown anymore. This is how you confirm it actually has stopped.

To run multiple containers of httpd by changing the port #

» What if you wanted to run two containers out of the same image?

e podman run -dt -p 8081:80/tcp docker.io/library/httpd

e podman run -dt —-p 8082:80/tcp docker.io/library/httpd
» you could run the same command you used to run the first container BUT you have to specify a different port.
« In this example we are picking port 8082 which is different than port 8081 chosen for the first container.

e podman ps

Example using podman command:

[root@localhost ~]# podman run —-dt —p 8081:80/tcp docker.io/library/httpd
bb79bba@7d91daf3058fa5cc98ad40af30ebfb6cd539a71a051c93578d6f2cff
[root@localhost ~]# podman run —-dt —p 8082:80/tcp docker.io/library/httpd
9506234af6f35e7f7b4a8b428f104da3d0c3a0c39f26€al03831a1069c922811

» This has started two containers out of the same one image

» You can check this by running podman ps

» If you go back to your browser and specify port 8081 in one tab and port 8082 in a second window you will get similar
result.

To stop and start a previously running container
e podman stop|start con-name

Example using podman command:

[root@linuxtest ~]# podman ps

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

bb79bba@7d91 docker.io/library/httpd:latest httpd-foreground About a minute ago Up About a minute
0.0.0.0:8081->80/tcp sad_jepsen

9506234af6f3 docker.io/library/httpd:latest httpd-foreground About a minute ago Up About a minute
0.0.0.0:8082—>80/tcp amazing_goldwasser

[root@linuxtest ~]#

[root@linuxtest ~]# podman stop 9506234af6f3

9506234af6f3

[root@linuxtest ~]# podman ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES

bb79bba®7d91 docker.io/library/httpd:latest httpd-foreground 4 minutes ago Up 4 minutes
0.0.0.0:8081->80/tcp sad_jepsen

[root@linuxtest ~]# podman start 9506234af6f3

9506234af6f3

[root@linuxtest ~]# podman ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES

bb79bba@7d91 docker.io/library/httpd:latest httpd-foreground 5 minutes ago Up 5 minutes
0.0.0.0:8081->80/tcp sad_jepsen

9506234af6f3 docker.io/library/httpd:latest httpd-foreground 5 minutes ago Up 5 seconds
0.0.0.0:8082—>80/tcp amazing_goldwasser

» Note we first check for the container IDs under podman ps

« Then we stopped the container with port 8082 by running podman stop 9506234af6f3

» Again we checked if the container stopped running with podman ps

» And we started the same port 8082 container again with the command podman start 9506234af6f3
» Finally we checked one more time with podman ps to confirm the container started running

To create a new container from the downloaded image

e podman create ——name httpd docker.io/library/httpd
» When we downloaded the image earlier we actually ran that container out of the box. But what if you wanted to download,
make certain changes to that image the way that you want it to look or function? For example instead of the "It works!"
page you wanted to put your name on it or something like that.
« Then you would have to change its code and then create the another new image out of that

Example using podman command:

[root@localhost ~]# podman create —name httpd-con docker.io/library/httpd
94f3c55ef8084449¢3605246b09b299fe4c77997ee09ec1319691d36451cd4f0

« The -name option specifies to give a name, here we given httpd but you could give your name as well just for fun of it. (it
could be anything)
« Itis suggested that you use httpd-con so it won't conflict with the native htppd service

» After the name you have to specify where is the registry (docker.io/library/httpd)

Check the running containers
Example using podman command:

[root@localhost ~]# podman ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES

bb79bba@7d91 docker.io/library/httpd:latest httpd-foreground 17 minutes ago Up 17 minutes
0.0.0.0:8081->80/tcp sad_jepsen

9506234af6f3 docker.io/library/httpd:latest httpd-foreground 17 minutes ago Up 12 minutes
0.0.0.0:8082—>80/tcp amazing_goldwasser

» Note that we only have the 2 containers that we started to show how to run multiple containers from the same image
» So that means it actually created the image out of that podman container and created a container, but it didn't started the
container so how do we start THAT container?
« For that you could just simply run podman start httpd-con
» This will start a container that already exist or that was previously ran

Example using podman command:

[root@linuxtest ~]# podman start httpd-con

httpd-con

[root@linuxtest ~]# podman ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES

bb79bba@7d91 docker.io/library/httpd:latest httpd-foreground 21 minutes ago Up 21 minutes
0.0.0.0:8081->80/tcp sad_jepsen

9506234af6f3 docker.io/library/httpd:latest httpd-foreground 21 minutes ago Up 16 minutes
0.0.0.0:8082—>80/tcp amazing_goldwasser

94f3c55ef808 docker.io/library/httpd:latest httpd-foreground 4 minutes ago Up 23 seconds
httpd-con

» The first two containers were run right out of that image
» The third container that you are running (last in this list) is the one you created yourself and gave the httpd-con name.

To start the newly created container

e podamn start httpd-con
« We already did this in previous examples

Manage your containers through systemd

» What if you wanted to manage your containers through systemd ?

« For example if you want your computer to boot up that http container with the system?

« For this we have to notify the systemd process that there is a new process that it has to run every time the system
boots up.

First you have to generate a unit file
e podman generate systemd ——new ——files ——name httpd (DEPRECATED)
» Copy the generated file to the /etc/systemd/system directory
e cp /root/container-httpd.service /etc/systemd/system
» you have to do this in order for systemd to recognize the new service
- Enable the service
e systemctl enable container-httpd-con.service
» Start the service

o systemctl start container—httpd-con.service

Checking the /etc/systemd/system/ directory
Example using 1s command:

[root@linuxtest ~]# cd /etc/systemd/system/

[root@linuxtest system]# 1s -1ltr

total 12

drwxr-xr-x. 2 root root 32 Jun 3 12:11 getty.target.wants

lrwxrwxrwx. 1 root root 37 Jun 3 12:11 ctrl-alt-del.target —>
/usr/lib/systemd/system/reboot. target

lrwxrwxrwx. 1 root root 43 Jun 3 12:11 dbus.service —> /usr/lib/systemd/system/dbus—-broker.service
lrwxrwxrwx. 1 root root 44 Jun 3 12:11 dbus-org.freedesktop.Avahi.service —>
/usr/lib/systemd/system/avahi-da

» When you travel to /etc/systemd/system/ directory and when youdo 1s -1ltr you'll see a list of services that have
been defined in this directory to be started during boot time.

= You have to create the unit file for the container and then copy it to this directory.

Generating the unit file for the container
Example using podman command:

[root@localhost ~]# podman generate systemd ——new ——files —-name httpd-con

Output:

DEPRECATED command:
It is recommended to use Quadlets for running containers and pods under systemd.

Please refer to podman-systemd.unit(5) for details.
/etc/systemd/system/container-httpd-con.service

+ Note that podman generate systemd command is DEPRECATED

» You can check how to auto-generate a sysytemd unit file using Quadlets here: 14.1. Auto-generating a systemd unit
file using Quadlets

» Even though the command is deprecated it is till completes its function in RHEL 9
» We know this because we got the message: /etc/systemd/system/container-httpd-con.service

« If you do not get this message you most likely get the message that it is in /root directory.

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/building_running_and_managing_containers/assembly_porting-containers-to-systemd-using-podman_building-running-and-managing-containers#assembly_porting-containers-to-systemd-using-podman_building-running-and-managing-containers

Copy the generated file to /etc/systemd/system
» This was automatic when running the podman generate systemd

Enable, start and check the service
Example using systemctl command:

[root@linuxtest system]# systemctl enable container—httpd-con.service
Created symlink /etc/systemd/system/default.target.wants/container-httpd-con.service -
/etc/systemd/system/container-httpd-con.service.
[root@linuxtest system]# systemctl start container-httpd-con.service
[root@linuxtest system]# systemctl status container—httpd-con.service
® container-httpd-con.service — Podman container—httpd-con.service
Loaded: loaded (/etc/systemd/system/container—-httpd-con.service; enabled; preset: disabled)
Active: active (running) since Wed 2024-07-10 14:49:31 CST; 4s ago
Docs: man:podman—generate-systemd(1)
Main PID: 8092 (conmon)
Tasks: 1 (limit: 65792)
Memory: 924.0K
CPU: 1.348s
CGroup: /system.slice/container-httpd-con.service
L8092 /usr/bin/conmon ——api-version 1 -c
d57a295607fda49c0d01662a99ec992f8c87bfb8376305daadfl6daadca7f>

» Service has been enabled and started

Auto-generating a systemd unit file using Quadilets

As podman generate systemd is Deprecated we will do de Quadlets procedure recommended by RedHat to generate a unit
file for a container

Prerequisites
o The container-tools meta-package is installed.
Procedure

1. Create the mysleep.container unit file:

[root@localhost ~]# cat $HOME/.config/containers/systemd/mysleep.container
[Unit]

Description=The sleep container

After=local-fs.target

[Container]
Image=registry.access.redhat.com/ubi9-minimal: latest

Exec=sleep 1000

[Install]

Start by default on boot
WantedBy=multi-user.target default.target

2. Create the mysleep.service based onthe mysleep.container file:

[root@localhost ~]# systemctl ——user daemon-reload

3. Optional: Check the status of the mysleep.service:

[root@localhost ~]# systemctl —-user status mysleep.service
o mysleep.service — The sleep container
Loaded: loaded (/home/_username_/.config/containers/systemd/mysleep.container; generated)

Active: inactive (dead)

4. Start the mysleep.service:

[root@localhost ~]# systemctl ——user start mysleep.service

